Parallel kinematic machines (PKMs) have demonstrated their potential in many applications when high stiffness and accuracy are needed, even at micro- and nanoscales. The present paper is focused on the functional design of a parallel platform providing high accuracy and repeatability in full spatial motion. The hexaglide architecture with 6-PSS kinematics was demonstrated as the best solution according to the specifications provided by an important Italian company active in the field of micro-positioning, particularly in vacuum applications. All the steps needed to prove the applicability of such kinematics at the microscale and their inherent advantages are presented. First, the kinematic model of the manipulator based on the study’s parametrization is provided. A global conditioning index (GCI) is proposed in order to optimize the kinetostatic performance of the robot, so that precise positioning in the required platform workspace is guaranteed avoiding singular configurations. Some numerical simulations demonstrate the effectiveness of the study. Finally, some details about the realization of a physical prototype are given.
Functional Design of a 6-DOF Platform for Micro-Positioning / Palpacelli, Matteo-Claudio; Carbonari, Luca; Palmieri, Giacomo; D’Anca, Fabio; Landini, Ettore; Giorgi, Guido. - In: ROBOTICS. - ISSN 2218-6581. - ELETTRONICO. - 9:4(2020). [10.3390/robotics9040099]
Functional Design of a 6-DOF Platform for Micro-Positioning
Palpacelli, Matteo-Claudio
Primo
;Carbonari, Luca;Palmieri, Giacomo;
2020-01-01
Abstract
Parallel kinematic machines (PKMs) have demonstrated their potential in many applications when high stiffness and accuracy are needed, even at micro- and nanoscales. The present paper is focused on the functional design of a parallel platform providing high accuracy and repeatability in full spatial motion. The hexaglide architecture with 6-PSS kinematics was demonstrated as the best solution according to the specifications provided by an important Italian company active in the field of micro-positioning, particularly in vacuum applications. All the steps needed to prove the applicability of such kinematics at the microscale and their inherent advantages are presented. First, the kinematic model of the manipulator based on the study’s parametrization is provided. A global conditioning index (GCI) is proposed in order to optimize the kinetostatic performance of the robot, so that precise positioning in the required platform workspace is guaranteed avoiding singular configurations. Some numerical simulations demonstrate the effectiveness of the study. Finally, some details about the realization of a physical prototype are given.File | Dimensione | Formato | |
---|---|---|---|
Robotics_Palpacelli.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
4.71 MB
Formato
Adobe PDF
|
4.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.