In this article we present an actuator fault-tolerant control architecture for the attitude and altitude tracking problem of multirotor aircrafts, under the effects of unknown drag coefficients and external wind. The tracking problem is faced by splitting it into two sub-problems, namely control law and control allocation. The control law is designed in terms of desired forces and moments which should act on the system, it does permit to exploit possible estimations of the disturbances acting on the vehicle and does not depend on the multirotor configuration. The control allocation, instead, optimally solves the redistribution of the control efforts among the motors according to the specific multirotor configuration, moreover it can actively cope with actuator faults whenever their estimations are available. Numerical simulations based on realistic scenarios confirm that the control architecture permits to solve the attitude and altitude tracking problem, despite the effects of faults and disturbances on the system.
Actuator Fault-Tolerant Control Architecture for Multirotor Vehicles in Presence of Disturbances / Baldini, A.; Felicetti, R.; Freddi, A.; Longhi, S.; Monteriu, A.. - In: JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS. - ISSN 0921-0296. - 99:3-4(2020), pp. 859-874. [10.1007/s10846-020-01150-y]
Actuator Fault-Tolerant Control Architecture for Multirotor Vehicles in Presence of Disturbances
Baldini A.
;Felicetti R.;Freddi A.;Longhi S.;Monteriu A.
2020-01-01
Abstract
In this article we present an actuator fault-tolerant control architecture for the attitude and altitude tracking problem of multirotor aircrafts, under the effects of unknown drag coefficients and external wind. The tracking problem is faced by splitting it into two sub-problems, namely control law and control allocation. The control law is designed in terms of desired forces and moments which should act on the system, it does permit to exploit possible estimations of the disturbances acting on the vehicle and does not depend on the multirotor configuration. The control allocation, instead, optimally solves the redistribution of the control efforts among the motors according to the specific multirotor configuration, moreover it can actively cope with actuator faults whenever their estimations are available. Numerical simulations based on realistic scenarios confirm that the control architecture permits to solve the attitude and altitude tracking problem, despite the effects of faults and disturbances on the system.File | Dimensione | Formato | |
---|---|---|---|
s10846-020-01150-y.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
3.79 MB
Formato
Adobe PDF
|
3.79 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.