This paper is focused on the development and validation of an error kinematic model of a mini spherical robot, aimed at its kinematic calibration. The robot is actually a spatial five-bar linkage, provided with two rotational degrees of freedom. A non-overconstrained kinematics is assumed for the robot in order to provide a simple mathematical model and allow a sensitivity analysis of all the involved geometric parameters. A simplified version of the model is proposed. It differs only for the degree of approximation. A comparison between full and reduced models is presented by means of numerical simulations, analyzing their behavior in a significant region of the robot workspace. In order to validate both of them a robot calibration is carried out on a physical prototype of the robot using a vision system, namely a fixed camera in a eye-to-hand configuration. An iterative algorithm aimed at the experimental identification of the geometric data of the robot is used. Some experimental results show the effectiveness of the study.

Sensitivity Analysis and Model Validation of a 2-DoF Mini Spherical Robot / Palpacelli, Matteo; Palmieri, Giacomo; Carbonari, Luca; Corinaldi, David. - In: JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS. - ISSN 0921-0296. - STAMPA. - (2018), pp. 1-9. [10.1007/s10846-017-0679-2]

Sensitivity Analysis and Model Validation of a 2-DoF Mini Spherical Robot

Palpacelli, Matteo;Palmieri, Giacomo;Carbonari, Luca;Corinaldi, David
2018-01-01

Abstract

This paper is focused on the development and validation of an error kinematic model of a mini spherical robot, aimed at its kinematic calibration. The robot is actually a spatial five-bar linkage, provided with two rotational degrees of freedom. A non-overconstrained kinematics is assumed for the robot in order to provide a simple mathematical model and allow a sensitivity analysis of all the involved geometric parameters. A simplified version of the model is proposed. It differs only for the degree of approximation. A comparison between full and reduced models is presented by means of numerical simulations, analyzing their behavior in a significant region of the robot workspace. In order to validate both of them a robot calibration is carried out on a physical prototype of the robot using a vision system, namely a fixed camera in a eye-to-hand configuration. An iterative algorithm aimed at the experimental identification of the geometric data of the robot is used. Some experimental results show the effectiveness of the study.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/258570
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact