Today, museum visits are perceived as an opportunity for individuals to explore and make up their own minds. The increasing technical capabilities of Augmented Reality (AR) technology have raised audience expectations, advancing the use of mobile AR in cultural heritage (CH) settings. Hence, there is the need to define a criteria, based on users’ preference, able to drive developers and insiders toward a more conscious development of AR-based applications. Starting from previous research (performed to define a protocol for understanding the visual behaviour of subjects looking at paintings), this paper introduces a truly predictive model of the museum visitor’s visual behaviour, measured by an eye tracker. A Hidden Markov Model (HMM) approach is presented, able to predict users’ attention in front of a painting. Furthermore, this research compares users’ behaviour between adults and children, expanding the results to different kind of users, thus providing a reliable approach to eye trajectories. Tests have been conducted defining areas of interest (AOI) and observing the most visited ones, attempting the prediction of subsequent transitions between AOIs. The results demonstrate the effectiveness and suitability of our approach, with performance evaluation values that exceed 90%.

User-Centered Predictive Model for Improving Cultural Heritage Augmented Reality Applications: An HMM-Based Approach for Eye-Tracking Data / Pierdicca, Roberto; Paolanti, Marina; Naspetti, Simona; Mandolesi, Serena; Zanoli, Raffaele; Frontoni, Emanuele. - In: JOURNAL OF IMAGING. - ISSN 2313-433X. - ELETTRONICO. - 4:8(2018), p. 101. [10.3390/jimaging4080101]

User-Centered Predictive Model for Improving Cultural Heritage Augmented Reality Applications: An HMM-Based Approach for Eye-Tracking Data

Pierdicca, Roberto
;
PAOLANTI, MARINA
;
Naspetti, Simona
;
Mandolesi, Serena
;
Zanoli, Raffaele
;
Frontoni, Emanuele
2018-01-01

Abstract

Today, museum visits are perceived as an opportunity for individuals to explore and make up their own minds. The increasing technical capabilities of Augmented Reality (AR) technology have raised audience expectations, advancing the use of mobile AR in cultural heritage (CH) settings. Hence, there is the need to define a criteria, based on users’ preference, able to drive developers and insiders toward a more conscious development of AR-based applications. Starting from previous research (performed to define a protocol for understanding the visual behaviour of subjects looking at paintings), this paper introduces a truly predictive model of the museum visitor’s visual behaviour, measured by an eye tracker. A Hidden Markov Model (HMM) approach is presented, able to predict users’ attention in front of a painting. Furthermore, this research compares users’ behaviour between adults and children, expanding the results to different kind of users, thus providing a reliable approach to eye trajectories. Tests have been conducted defining areas of interest (AOI) and observing the most visited ones, attempting the prediction of subsequent transitions between AOIs. The results demonstrate the effectiveness and suitability of our approach, with performance evaluation values that exceed 90%.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/262486
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact