The effectiveness of alternatives to synthetic fungicides for the control of pathogens causing postharvest diseases of sweet cherry was tested in vitro and in vivo. When amended to potato dextrose-agar, oligosaccharides, benzothiadiazole, chitosan, calcium plus organic acids, and nettle macerate reduced the growth of Monilinia laxa, Botrytis cinerea and Rhizopus stolonifer. Treatment of sweet cherries three days before harvest or soon after harvest with oligosaccharides, benzothiadiazole, chitosan, calcium plus organic acids, nettle extract, fir extract, laminarin, or potassium bicarbonate reduced brown rot, gray mold, Rhizopus rot, Alternaria rot, blue mold and green rot of cherries kept 10 d at 20±1 °C, or 14 d at 0.5±1 °C and then exposed to 7 d of shelf life at 20±1 °C. Among these resistance inducers, when applied either preharvest or postharvest, chitosan was one of the most effective in reducing storage decay of sweet cherry, and its antimicrobial activity in vitro and in field trials was comparable to that of the fungicide fenhexamid. Benzothiadiazole was more effective when applied postharvest than with preharvest spraying. These resistance inducers could represent good options for organic growers and food companies, or they can complement the use of synthetic fungicides in an integrated disease management strategy.

Pre and postharvest treatment with alternatives to synthetic fungicides to control postharvest decay of sweet cherry / Feliziani, Erica; Santini, Marilla; Landi, Lucia; Romanazzi, Gianfranco. - In: POSTHARVEST BIOLOGY AND TECHNOLOGY. - ISSN 0925-5214. - 78:(2013), pp. 133-138. [10.1016/j.postharvbio.2012.12.004]

Pre and postharvest treatment with alternatives to synthetic fungicides to control postharvest decay of sweet cherry

FELIZIANI, ERICA;SANTINI, MARILLA;LANDI, Lucia;ROMANAZZI, GIANFRANCO
2013-01-01

Abstract

The effectiveness of alternatives to synthetic fungicides for the control of pathogens causing postharvest diseases of sweet cherry was tested in vitro and in vivo. When amended to potato dextrose-agar, oligosaccharides, benzothiadiazole, chitosan, calcium plus organic acids, and nettle macerate reduced the growth of Monilinia laxa, Botrytis cinerea and Rhizopus stolonifer. Treatment of sweet cherries three days before harvest or soon after harvest with oligosaccharides, benzothiadiazole, chitosan, calcium plus organic acids, nettle extract, fir extract, laminarin, or potassium bicarbonate reduced brown rot, gray mold, Rhizopus rot, Alternaria rot, blue mold and green rot of cherries kept 10 d at 20±1 °C, or 14 d at 0.5±1 °C and then exposed to 7 d of shelf life at 20±1 °C. Among these resistance inducers, when applied either preharvest or postharvest, chitosan was one of the most effective in reducing storage decay of sweet cherry, and its antimicrobial activity in vitro and in field trials was comparable to that of the fungicide fenhexamid. Benzothiadiazole was more effective when applied postharvest than with preharvest spraying. These resistance inducers could represent good options for organic growers and food companies, or they can complement the use of synthetic fungicides in an integrated disease management strategy.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/86370
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 118
  • ???jsp.display-item.citation.isi??? 94
social impact