Abstract Human NAD(P)H: quinone oxidoreductase 1 (NQO1) catalyzes the obligatory two-electron reduction of quinones. For this peculiar catalytic mechanism, the enzyme is considered an important cytoprotector. The NQO1 gene is expressed in all human tissues, unless a polymorphism due to C609T point mutation is present. This polymorphism produces a null phenotype in the homozygous condition and reduced enzyme activity in the heterozygous one. We previously demonstrated that two cell lines of hematopoietic origin, HL60 and Raji cells, possess the same heterozygous genotype, but different phenotypes; as expected for an heterozygous condition the HL-60 cell line showed a low level of enzyme activity, while the Raji cell line appeared as null phenotype. The level of NQO1 mRNA was similar in the two cell lines and the different phenotype was not due to additional mutations or to expression of alternative splicing products. Here we show that in Raji BL-cell line with heterozygous genotype the null NQO1 phenotype is due to 20S proteasome degradation of wild-type and mutant protein isoforms and is not directly linked to C609T polymorphism. This finding may have important implications in B-cell differentiation, in leukemia risk evaluation and in chemotherapy based on proteasome inhibitors.

ATP independent proteasomal degradation of NQO1 in BL cell lines / Scarpa, E. S.; Bonfili, L.; Eleuteri, A. M.; LA TEANA, Anna; Brugé, F.; Bertoli, Enrico; Littarru, GIAN PAOLO; Cacciamani, Tiziana. - In: BIOCHIMIE. - ISSN 0300-9084. - STAMPA. - 94:(2012), pp. 1242-1249. [10.1016/j.biochi.2012.02.014]

ATP independent proteasomal degradation of NQO1 in BL cell lines

LA TEANA, ANNA;BERTOLI, Enrico;LITTARRU, GIAN PAOLO;CACCIAMANI, Tiziana
2012-01-01

Abstract

Abstract Human NAD(P)H: quinone oxidoreductase 1 (NQO1) catalyzes the obligatory two-electron reduction of quinones. For this peculiar catalytic mechanism, the enzyme is considered an important cytoprotector. The NQO1 gene is expressed in all human tissues, unless a polymorphism due to C609T point mutation is present. This polymorphism produces a null phenotype in the homozygous condition and reduced enzyme activity in the heterozygous one. We previously demonstrated that two cell lines of hematopoietic origin, HL60 and Raji cells, possess the same heterozygous genotype, but different phenotypes; as expected for an heterozygous condition the HL-60 cell line showed a low level of enzyme activity, while the Raji cell line appeared as null phenotype. The level of NQO1 mRNA was similar in the two cell lines and the different phenotype was not due to additional mutations or to expression of alternative splicing products. Here we show that in Raji BL-cell line with heterozygous genotype the null NQO1 phenotype is due to 20S proteasome degradation of wild-type and mutant protein isoforms and is not directly linked to C609T polymorphism. This finding may have important implications in B-cell differentiation, in leukemia risk evaluation and in chemotherapy based on proteasome inhibitors.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/66266
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact