The escalating conflict between cetaceans and fisheries underscores the need for efficient mitigation strategies that balance conservation priorities with economic viability. This study presents a TinyML-driven approach deploying an optimized Convolutional Neural Network (CNN) on a Raspberry Pi Zero 2 W for real-time detection of bottlenose dolphin whistles, leveraging spectrogram analysis to address acoustic monitoring challenges. Specifically, a CNN model previously developed for classifying dolphins’ vocalizations and originally implemented with TensorFlow was converted to TensorFlow Lite (TFLite) with architectural optimizations, reducing the model size by 76%. Both TensorFlow and TFLite models were trained on 22 h of underwater recordings taken in controlled environments and processed into 0.8 s spectrogram segments (300 × 150 pixels). Despite reducing model size, TFLite models maintained the same accuracy as the original TensorFlow model (87.8% vs. 87.0%). Throughput and latency were evaluated by varying the thread allocation (1–8 threads), revealing the best performance at 4 threads (quad-core alignment), achieving an inference latency of 120 ms and sustained throughput of 8 spectrograms/second. The system demonstrated robustness in 120 h of continuous stress tests without failure, underscoring its reliability in marine environments. This work achieved a critical balance between computational efficiency and detection fidelity (F1-score: 86.9%) by leveraging quantized, multithreaded inference. These advancements enable low-cost devices for real-time cetacean presence detection, offering transformative potential for bycatch reduction and adaptive deterrence systems. This study bridges artificial intelligence innovation with ecological stewardship, providing a scalable framework for deploying machine learning in resource-constrained settings while addressing urgent conservation challenges.
Real-Time Dolphin Whistle Detection on Raspberry Pi Zero 2 W with a TFLite Convolutional Neural Network / De Marco, Rocco; Di Nardo, Francesco; Rongoni, Alessandro; Screpanti, Laura; Scaradozzi, David. - In: ROBOTICS. - ISSN 2218-6581. - ELETTRONICO. - 14:5(2025). [10.3390/robotics14050067]
Real-Time Dolphin Whistle Detection on Raspberry Pi Zero 2 W with a TFLite Convolutional Neural Network
Di Nardo, Francesco
Secondo
;Rongoni, Alessandro;Screpanti, LauraPenultimo
;Scaradozzi, DavidUltimo
2025-01-01
Abstract
The escalating conflict between cetaceans and fisheries underscores the need for efficient mitigation strategies that balance conservation priorities with economic viability. This study presents a TinyML-driven approach deploying an optimized Convolutional Neural Network (CNN) on a Raspberry Pi Zero 2 W for real-time detection of bottlenose dolphin whistles, leveraging spectrogram analysis to address acoustic monitoring challenges. Specifically, a CNN model previously developed for classifying dolphins’ vocalizations and originally implemented with TensorFlow was converted to TensorFlow Lite (TFLite) with architectural optimizations, reducing the model size by 76%. Both TensorFlow and TFLite models were trained on 22 h of underwater recordings taken in controlled environments and processed into 0.8 s spectrogram segments (300 × 150 pixels). Despite reducing model size, TFLite models maintained the same accuracy as the original TensorFlow model (87.8% vs. 87.0%). Throughput and latency were evaluated by varying the thread allocation (1–8 threads), revealing the best performance at 4 threads (quad-core alignment), achieving an inference latency of 120 ms and sustained throughput of 8 spectrograms/second. The system demonstrated robustness in 120 h of continuous stress tests without failure, underscoring its reliability in marine environments. This work achieved a critical balance between computational efficiency and detection fidelity (F1-score: 86.9%) by leveraging quantized, multithreaded inference. These advancements enable low-cost devices for real-time cetacean presence detection, offering transformative potential for bycatch reduction and adaptive deterrence systems. This study bridges artificial intelligence innovation with ecological stewardship, providing a scalable framework for deploying machine learning in resource-constrained settings while addressing urgent conservation challenges.| File | Dimensione | Formato | |
|---|---|---|---|
|
robotics-14-00067.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
2.29 MB
Formato
Adobe PDF
|
2.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


