Exposure to extremely low-frequency magnetic fields (ELF-MF) can induce biological alterations in human cells, including peripheral blood mononuclear cells (PBMCs). However, the molecular mechanisms and key regulatory factors underlying this cellular response remain largely unknown. In this study, we analyzed the proteomic profiles of PBMCs isolated from three human subjects. PBMCs were exposed to 50 Hz, 1 mT of ELF-MF for 24 h and compared to unexposed PBMCs from the same individuals. ELF-MF exposure altered the expression levels of several PBMC proteins without affecting cell proliferation, cell viability, or cell cycle progression. A total of 51 proteins were upregulated, 36 of which were intercorrelated and associated with the Cellular Metabolic Process (GO:0044237) and Metabolic Process (GO:0008152). Among them, solute carrier family 25 member 4 (SLC25A4), which catalyzes the exchange of cytoplasmic ADP for mitochondrial ATP across the inner mitochondrial membrane, was consistently upregulated in all ELF-MF–exposed samples. Additionally, 67 proteins were downregulated, many of which are linked to T cell costimulation (GO:0031295), Cell activation (GO:0001775), and Immune system processes (GO:0002376) included ASPSCR1, PCYT1A, PCYT2, QRAS, and REPS1. In conclusion, ELF-MF exposure induces metabolic reprogramming in human PBMCs, characterized by the upregulation of mitochondrial proteins and downregulation of immune-activation-related proteins, without compromising cell viability or proliferation.
Proteomic Characterization of Human Peripheral Blood Mononuclear Cells Exposed to a 50 Hz Magnetic Field / Bracci, Massimo; Lazzarini, Raffaella; Piva, Francesco; Giulietti, Matteo; Marinelli Busilacchi, Elena; Rossi, Elisa; Di Criscio, Fabio; Santarelli, Lory; Poloni, Antonella. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 26:13(2025). [10.3390/ijms26136035]
Proteomic Characterization of Human Peripheral Blood Mononuclear Cells Exposed to a 50 Hz Magnetic Field
Bracci, Massimo
Primo
;Lazzarini, Raffaella
;Piva, Francesco;Giulietti, Matteo;Marinelli Busilacchi, Elena;Rossi, Elisa;Di Criscio, Fabio;Santarelli, Lory;Poloni, AntonellaUltimo
2025-01-01
Abstract
Exposure to extremely low-frequency magnetic fields (ELF-MF) can induce biological alterations in human cells, including peripheral blood mononuclear cells (PBMCs). However, the molecular mechanisms and key regulatory factors underlying this cellular response remain largely unknown. In this study, we analyzed the proteomic profiles of PBMCs isolated from three human subjects. PBMCs were exposed to 50 Hz, 1 mT of ELF-MF for 24 h and compared to unexposed PBMCs from the same individuals. ELF-MF exposure altered the expression levels of several PBMC proteins without affecting cell proliferation, cell viability, or cell cycle progression. A total of 51 proteins were upregulated, 36 of which were intercorrelated and associated with the Cellular Metabolic Process (GO:0044237) and Metabolic Process (GO:0008152). Among them, solute carrier family 25 member 4 (SLC25A4), which catalyzes the exchange of cytoplasmic ADP for mitochondrial ATP across the inner mitochondrial membrane, was consistently upregulated in all ELF-MF–exposed samples. Additionally, 67 proteins were downregulated, many of which are linked to T cell costimulation (GO:0031295), Cell activation (GO:0001775), and Immune system processes (GO:0002376) included ASPSCR1, PCYT1A, PCYT2, QRAS, and REPS1. In conclusion, ELF-MF exposure induces metabolic reprogramming in human PBMCs, characterized by the upregulation of mitochondrial proteins and downregulation of immune-activation-related proteins, without compromising cell viability or proliferation.| File | Dimensione | Formato | |
|---|---|---|---|
|
ijms-26-06035.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
3.1 MB
Formato
Adobe PDF
|
3.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


