This study focuses on training a custom, small Convolutional Neural Network (CNN) using a limited dataset through data augmentation that is aimed at developing weights for subsequent fine-tuning on specific defects, namely improperly polished aluminum surfaces. The objective is to adapt the network for use in computationally restricted environments. The methodology involves using two computers—a low-performance PC for network creation and initial testing and a more powerful PC for network training using the Darknet framework—after which the network is transferred back to the initial low-performance PC. The results demonstrate that the custom lightweight network suited for a low-performance PC effectively performs object detection under the described conditions. These findings suggest that using tailored lightweight networks for recognizing specific types of defects is feasible and warrants further investigation to enhance the industrial defect detection processes in limited computational settings. This approach highlights the potential for deploying AI-driven quality control in environments with constrained hardware capabilities.
From Dataset Creation to Defect Detection: A Proposed Procedure for a Custom CNN Approach for Polishing Applications on Low-Performance PCs / Bajrami, A.; Palpacelli, M. C.. - In: MACHINES. - ISSN 2075-1702. - ELETTRONICO. - 12:7(2024). [10.3390/machines12070453]
From Dataset Creation to Defect Detection: A Proposed Procedure for a Custom CNN Approach for Polishing Applications on Low-Performance PCs
Bajrami A.
;Palpacelli M. C.
2024-01-01
Abstract
This study focuses on training a custom, small Convolutional Neural Network (CNN) using a limited dataset through data augmentation that is aimed at developing weights for subsequent fine-tuning on specific defects, namely improperly polished aluminum surfaces. The objective is to adapt the network for use in computationally restricted environments. The methodology involves using two computers—a low-performance PC for network creation and initial testing and a more powerful PC for network training using the Darknet framework—after which the network is transferred back to the initial low-performance PC. The results demonstrate that the custom lightweight network suited for a low-performance PC effectively performs object detection under the described conditions. These findings suggest that using tailored lightweight networks for recognizing specific types of defects is feasible and warrants further investigation to enhance the industrial defect detection processes in limited computational settings. This approach highlights the potential for deploying AI-driven quality control in environments with constrained hardware capabilities.File | Dimensione | Formato | |
---|---|---|---|
machines-12-00453-v2.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
2.78 MB
Formato
Adobe PDF
|
2.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.