In this paper we analyze the wavefront solutions of parabolic partial differential equations of the type \[ g(u)u_{\tau}+f(u)u_{x}=\left(D(u)u_{x}\right)_{x}+\rho(u),\quad u\left(\tau,x\right)\in[0,1] \] where the reaction term \(\rho\) is of monostable-type. We allow the diffusivity \(D\) and the accumulation term \(g\) to have a finite number of changes of sign. We provide an existence result of travelling wave solutions (t.w.s.) together with an estimate of the threshold wave speed. Finally, we classify the t.w.s. between classical and sharp ones.
Wavefront solutions for reaction-diffusion-convection models with accumulation term and aggregative movements / Cantarini, Marco; Marcelli, Cristina; Papalini, Francesca. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - STAMPA. - 32:2(2025). [10.1007/s00030-024-01020-8]
Wavefront solutions for reaction-diffusion-convection models with accumulation term and aggregative movements
Marcelli, Cristina;Papalini Francesca
2025-01-01
Abstract
In this paper we analyze the wavefront solutions of parabolic partial differential equations of the type \[ g(u)u_{\tau}+f(u)u_{x}=\left(D(u)u_{x}\right)_{x}+\rho(u),\quad u\left(\tau,x\right)\in[0,1] \] where the reaction term \(\rho\) is of monostable-type. We allow the diffusivity \(D\) and the accumulation term \(g\) to have a finite number of changes of sign. We provide an existence result of travelling wave solutions (t.w.s.) together with an estimate of the threshold wave speed. Finally, we classify the t.w.s. between classical and sharp ones.File | Dimensione | Formato | |
---|---|---|---|
rdc_revised_nocolor.pdf
embargo fino al 31/01/2026
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
464.21 kB
Formato
Adobe PDF
|
464.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
s00030-024-01020-8.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
585.53 kB
Formato
Adobe PDF
|
585.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.