In this paper we analyze the wavefront solutions of parabolic partial differential equations of the type \[ g(u)u_{\tau}+f(u)u_{x}=\left(D(u)u_{x}\right)_{x}+\rho(u),\quad u\left(\tau,x\right)\in[0,1] \] where the reaction term \(\rho\) is of monostable-type. We allow the diffusivity \(D\) and the accumulation term \(g\) to have a finite number of changes of sign. We provide an existence result of travelling wave solutions (t.w.s.) together with an estimate of the threshold wave speed. Finally, we classify the t.w.s. between classical and sharp ones.

Wavefront solutions for reaction-diffusion-convection models with accumulation term and aggregative movements / Cantarini, Marco; Marcelli, Cristina; Papalini, Francesca. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - STAMPA. - 32:2(2025). [10.1007/s00030-024-01020-8]

Wavefront solutions for reaction-diffusion-convection models with accumulation term and aggregative movements

Marcelli, Cristina;Papalini Francesca
2025-01-01

Abstract

In this paper we analyze the wavefront solutions of parabolic partial differential equations of the type \[ g(u)u_{\tau}+f(u)u_{x}=\left(D(u)u_{x}\right)_{x}+\rho(u),\quad u\left(\tau,x\right)\in[0,1] \] where the reaction term \(\rho\) is of monostable-type. We allow the diffusivity \(D\) and the accumulation term \(g\) to have a finite number of changes of sign. We provide an existence result of travelling wave solutions (t.w.s.) together with an estimate of the threshold wave speed. Finally, we classify the t.w.s. between classical and sharp ones.
File in questo prodotto:
File Dimensione Formato  
rdc_revised_nocolor.pdf

embargo fino al 31/01/2026

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Tutti i diritti riservati
Dimensione 464.21 kB
Formato Adobe PDF
464.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
s00030-024-01020-8.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 585.53 kB
Formato Adobe PDF
585.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/338432
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact