This paper explores the issue of protective film removal in the hand layup process for composite parts production. The hand layup process, involving the assembly of prepreg plies onto a mold, is a skill-intensive task performed by multiple expert workers. A significant limitation of this method is its low repeatability, which impacts both the consistency and quality of the final product. The current research trend has the objective of developing autonomous or semi-autonomous layup cells to enhance process consistency, reduce production costs, and improve product quality. Despite all this interest in bringing automation in composite manufacturing, an area left relatively unexplored is the removal of protective films from prepregs. The plies used in the hand layup process, are generally covered by those films that are removed by the workers during the manual layup activity. The manual removal of protective films from prepregs is a tedious and valueless task, which represents a bottleneck in achieving full or semi-automation of the layup process. For this reason, an autonomous or semi-autonomous cell needs to perform it to be market-relevant. In this work, we propose a new effective method for initiating the peeling and integrate this method into a complete framework for the removal of protective films. This solution is designed to be easily integrated into a variety of existing cells. Finally, we validate our framework with an experimental proof of concept (PoC) which makes use of two collaborative robots for task execution.

Automating the hand layup process: On the removal of protective films with collaborative robots / Kermenov, Renat; Foix, Sergi; Borràs, Júlia; Castorani, Vincenzo; Longhi, Sauro; Bonci, Andrea. - In: ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING. - ISSN 0736-5845. - ELETTRONICO. - 93:(2025). [10.1016/j.rcim.2024.102899]

Automating the hand layup process: On the removal of protective films with collaborative robots

Kermenov, Renat;Castorani, Vincenzo;Longhi, Sauro;Bonci, Andrea
2025-01-01

Abstract

This paper explores the issue of protective film removal in the hand layup process for composite parts production. The hand layup process, involving the assembly of prepreg plies onto a mold, is a skill-intensive task performed by multiple expert workers. A significant limitation of this method is its low repeatability, which impacts both the consistency and quality of the final product. The current research trend has the objective of developing autonomous or semi-autonomous layup cells to enhance process consistency, reduce production costs, and improve product quality. Despite all this interest in bringing automation in composite manufacturing, an area left relatively unexplored is the removal of protective films from prepregs. The plies used in the hand layup process, are generally covered by those films that are removed by the workers during the manual layup activity. The manual removal of protective films from prepregs is a tedious and valueless task, which represents a bottleneck in achieving full or semi-automation of the layup process. For this reason, an autonomous or semi-autonomous cell needs to perform it to be market-relevant. In this work, we propose a new effective method for initiating the peeling and integrate this method into a complete framework for the removal of protective films. This solution is designed to be easily integrated into a variety of existing cells. Finally, we validate our framework with an experimental proof of concept (PoC) which makes use of two collaborative robots for task execution.
File in questo prodotto:
File Dimensione Formato  
2024 Kermenov-et-al Automating the hand layup process On the removal of protective films.pdf

accesso aperto

Descrizione: postprint
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/337855
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact