The present paper is devoted to the quasilinear Choquard equation driven by the p-Laplacian operator (Formula presented) where 2 ≤ p < N, Iα denotes the Riesz potential of order α ∈ (0, N), and G ∈ C1(R, R). Assuming Berestycki–Lions type conditions on G, we prove the existence of a least energy solution u ∈ W1,p(RN) by means of variational methods. Moreover, we establish some qualitative properties of u when G is even and non–decreasing.

Existence of least energy solutions for a quasilinear Choquard equation / Ambrosio, V.; Autuori, G.; Isernia, T.. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - 23:11(2024), pp. 1661-1678. [10.3934/cpaa.2024061]

Existence of least energy solutions for a quasilinear Choquard equation

Ambrosio V.;Autuori G.;Isernia T.
2024-01-01

Abstract

The present paper is devoted to the quasilinear Choquard equation driven by the p-Laplacian operator (Formula presented) where 2 ≤ p < N, Iα denotes the Riesz potential of order α ∈ (0, N), and G ∈ C1(R, R). Assuming Berestycki–Lions type conditions on G, we prove the existence of a least energy solution u ∈ W1,p(RN) by means of variational methods. Moreover, we establish some qualitative properties of u when G is even and non–decreasing.
2024
File in questo prodotto:
File Dimensione Formato  
Ambrosio_Existence-least-energy-solutions_Post-print.pdf

accesso aperto

Descrizione: This article has been accepted for publication in a revised form in COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, https://dx.doi.org/10.3934/cpaa.2024061. This version is free to download for private research and study only. Not for redistribution, re-sale or use in derivative works.
Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Tutti i diritti riservati
Dimensione 485.7 kB
Formato Adobe PDF
485.7 kB Adobe PDF Visualizza/Apri
Ambrosio_Existence-least-energy-solutions_2024.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 376.08 kB
Formato Adobe PDF
376.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/336922
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact