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EXISTENCE OF LEAST ENERGY SOLUTIONS FOR A QUASILINEAR
CHOQUARD EQUATION

VINCENZO AMBROSIO, GIUSEPPINA AUTUORI AND TERESA ISERNIA

Abstract. The present paper is devoted to the study of the quasilinear Choquard equation
driven by the p-Laplacian operator

−∆pu+ |u|p−2u = (Iα ∗G(u))G′(u) in RN ,

where 2 ≤ p < N , Iα denotes the Riesz potential of order α ∈ (0, N), and G ∈ C1(R,R).
Assuming Berestycki–Lions type conditions on G, we prove the existence of a least energy
solution u ∈ W 1,p(RN ) by means of variational methods. Moreover, we establish some
qualitative properties of u when G is even and non–decreasing.

1. Introduction

In this paper we study existence and qualitative properties of solutions to the following
quasilinear Choquard equation

−∆pu+ |u|p−2u = (Iα ∗G(u))g(u) in RN , (1.1)

where 2 ≤ p < N , ∆p· = div(|∇ · |p−2∇·) is the p–Laplacian operator, g : R→R is a
continuous nonlinearity satisfying suitable conditions, G(t) =

∫ t

0
g(τ)dτ , 0 < α < N , and Iα

denotes the Riesz potential defined by

Iα(x) =
Γ
(
N−α
2

)
Γ
(
α
2

)
π

N
2 2α

· 1

|x|N−α
, x ∈ RN \ {0}.

When p = 2, we see that (1.1) boils down to the nonlocal elliptic equation

−∆u+ u = (Iα ∗G(u)) g(u) in RN . (1.2)

Choosing G(u) =
|u|q

q
, with q ∈ (1,∞), equation (1.2) becomes

−∆u+ u =

(
Iα ∗ |u|q

q

)
|u|q−2u in RN . (1.3)

In particular, if N = 3 and α = q = 2, then (1.3) turns out to be the so called Choquard–
Pekar equation

−∆u+ u =

(
I2 ∗

|u|2

2

)
u in R3. (1.4)

It was introduced in 1954 by S. Pekar [23] to describe the quantum theory of a polaron at rest,
and later, in 1976, it appeared in [13] as a model proposed by P. Choquard in the study of
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2 V. AMBROSIO, G. AUTUORI, AND T. ISERNIA

an electron trapped in its own hole, in a certain approximation to Hartee–Fock theory of one
component plasma. Equation (1.4) was also proposed in 1996 by R. Penrose [18] as a model
of self–gravitating matter and, in that context, it is known as the nonlinear Schrödinger–
Newton equation. Note that, if u solves (1.1), then the function ψ(t, x) = eitu(x) is a solitary
wave of the time–dependent Hartee equation

iψt +∆ψ = −(I2 ∗ |ψ|2)ψ in R+ × RN ,

and, in this context, (1.1) is also known as the stationary nonlinear Hartee equation. The first
existence results for (1.4), via variational methods, are due to H.L. Lieb [13], P.-L. Lions [15]
and G.P. Menzala [17]. Later, L. Ma and L. Zhao [16] showed that the positive solutions of
(1.3) must be radially symmetric and monotone decreasing about some fixed point, under the
assumption that a given set of real numbers, defined in terms of N , α, and q, is nonempty.
These existence and symmetry results for (1.3) have been extended by V. Moroz and J. Van
Schaftingen [19] for the optimal range of exponents q ∈ (N+α

N
, N+α
N−2

). Subsequently, in [20]
they examined the existence and qualitative properties of least energy solutions for (1.2)
whenever F is a general nonlinearity of Berestycki–Lions type [7]. In [21] V. Moroz and J.
Van Schaftingen used a suited nonlocal penalization argument to investigate the existence of
semi-classical solutions to

−ε2∆u+ V (x)u = ε−α (Iα ∗ |u|q) |u|q−2u in RN ,

where ε > 0 is a small parameter, V ∈ C(RN , [0,∞)) is an external potential with some
restrictions on the decay at infinity and having a local minimum, and q ≥ 2 belongs to
an optimal range of exponents. Inspired by [21], C.O. Alves and M. Yang [4] analyzed the
following quasilinear Choquard equation

−εp∆pu+ V (x)|u|p−2u = ε−α (Iα ∗H(u))h(u) in RN , (1.5)

where p ∈ (1, N), α ∈ (N−p,N), V is a positive continuous potential with a local minimum,
and h is a C1-nonlinearity verifying the following conditions:
(h1) there exist p < σ1 ≤ σ2 <

αp
N−p

and C0 > 0 such that

|h(t)| ≤ C0(|t|σ1−1 + |t|σ2−1) for all t ∈ R;

(h2) there exists θ > p such that 0 < θH(t) = θ
∫ t

0
h(τ) dτ ≤ 2th(t) for all t > 0;

(h3) there exists ς ∈ [ θ
2
, αp
N−p

+ θ
2
− p) such that

h′(t)t2 −
(
p+ ς − θ

2
− 1

)
h(t)t > 0 for all t > 0.

Combining variational methods with Ljusternik–Schnirelmann category theory, the authors
studied existence, multiplicity and concentration of positive solutions to (1.5) (see also [2, 3]
for related results). Observe that, adapting the Nehari manifold argument used in [5], one
can obtain the existence of a positive least energy solution to (1.5) with V = ε = 1, by
considering nonlinearities h ∈ C(R,R) that satisfy (h1), (h2) and the following monotonicity
condition:
(h3)

′ t ∈ (0,∞) 7→ h(t)t1−p/2 is increasing.
For a more detailed discussion about the Choquard equation and its variants and generaliza-
tions, we refer to [22] and references therein.
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Motivated by [2–4,20], the purpose of this paper is to extend the results in [20] for the quasi-
linear Choquard equation (1.1) when G is a Berestycki–Lions type nonlinearity. Throughout
the paper, we assume that g ∈ C(R,R) satisfies the following assumptions:

(g1) there exists C > 0 such that

|t g(t)| ≤ C
(
|t|

N+α
N

· p
2 + |t|

N+α
N−p

· p
2

)
for all t ∈ R,

(g2)

lim
t→ 0

G(t)

|t|N+α
N

· p
2

= 0 and lim
t→∞

G(t)

|t|
N+α
N−p

· p
2

= 0,

(g3) there exists t0 ∈ R \ {0} such that G(t0) ̸= 0.
Note that assumptions (g1)–(g3) are more general than (h1)–(h3) imposed in [4], and when
p = 2 they coincide with those in [20].

Problem (1.1) has a variational nature. Indeed, the critical points of the energy functional
J : W 1,p(RN)→R associated with (1.1), namely,

J (u) =
1

p

∫
RN

{|∇u|p + |u|p} dx− 1

2

∫
RN

(Iα ∗G(u))G(u) dx,

are weak solutions of (1.1). We recall that u ∈ W 1,p(RN) is a weak solution to (1.1) if for
every φ ∈ W 1,p(RN) it holds∫

RN

|∇u|p−2∇u∇φdx+
∫
RN

|u|p−2uφdx =

∫
RN

(Iα ∗G(u)) g(u)φdx. (1.6)

The functional J is well defined by (g1), the Sobolev embeddings for W 1,p(RN) (see [1]), and
the following Hardy–Littlewood–Sobolev inequality.

Theorem 1.1. [14, Theorem 4.3] Let r, t ∈ (1,∞) and µ ∈ (0, N) with 1
r
+ µ

N
+ 1

t
= 2.

Let f ∈ Lr(RN) and h ∈ Lt(RN). Then there exists a sharp constant C(r,N, µ, t) > 0,
independent of f and h, such that∣∣∣∣∫∫

R2N

f(x)h(y)

|x− y|µ
dxdy

∣∣∣∣ ≤ C(r,N, µ, t)∥f∥r∥h∥t.

We also introduce the Pohožaev functional P : W 1,p(RN)→R given by

P(u) =
N − p

p
∥∇u∥pp +

N

p
∥u∥pp −

N + α

2

∫
RN

(Iα ∗G(u))G(u) dx.

Thanks to the recent result established in [6], we know that, under suitable restrictions on
N , p and α, every weak solution to (1.1) satisfies a Pohožaev type identity.

Theorem 1.2. [6, Theorem 1.2] Let p ∈ [2,∞), N > p and α ∈ ((N − 2p)+, N). Assume
that g ∈ C(R,R) fulfills (g1)-(g2). Let u ∈ W 1,p(RN) be a weak solution to (1.1). Then,
u ∈ L∞(RN) ∩ C1,σ

loc (RN) for some σ ∈ (0, 1). Moreover, u satisfies P(u) = 0, namely, the
following Pohožaev identity

N − p

p
∥∇u∥pp +

N

p
∥u∥pp −

N + α

2

∫
RN

(Iα ∗G(u))G(u) dx = 0. (1.7)
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In order to state our main results precisely, we give the following definition. Let

cLE = inf
{
J (v) : v ∈ W 1,p(RN) \ {0}, J ′(v) = 0

}
. (1.8)

We say that u ∈ W 1,p(RN)\{0} is a least energy solution of (1.1) if J ′(u) = 0 and J (u) = cLE.
Our first result concerns the existence of a least energy solution to (1.1).

Theorem 1.3. Assume that 2 ≤ p < N and α ∈ ((N − 2p)+, N). Under assumptions
(g1)–(g3), problem (1.1) has a least energy solution.

The proof of Theorem 1.3 rests on variational arguments. Since we are not assuming
neither the Ambrosetti–Rabinowiz condition (h2) nor the monotonicity assumption (h3)

′, we
can not apply the classical Nehari manifold method. To avoid these difficulties, we develop
a variational approach inspired by [20]. Denoting by

Γ =
{
γ ∈ C([0, 1];W 1,p(RN)) : γ(0) = 0 and J (γ(1)) < 0

}
we consider the mountain pass value

cMP = inf
γ∈Γ

sup
t∈[0,1]

J (γ(t)). (1.9)

We first construct a Pohožaev–Palais–Smale sequence (un)n∈N ⊂ W 1,p(RN) at level cMP, that
is, a Palais–Smale sequence at level cMP and that satisfies asymptotically the Pohožaev iden-
tity (1.7); see Proposition 2.1. In particular, we have that (un)n∈N is bounded in W 1,p(RN);
see Lemma 2.1. To study the convergence of (un)n∈N in W 1,p(RN), we prove an almost ev-
erywhere convergence of the gradients of bounded Palais–Smale sequences; see Lemma 2.2.
Utilizing this result and a concentration-compactness argument, in Proposition 2.2 we show
that the sequence (un)n∈N converges, up to translation and extraction of subsequences, in
W 1,p(RN) to a nontrivial solution u to (1.1). Finally, we deduce that this solution is indeed a
least energy solution for (1.1), by constructing suitable paths associated with critical points;
cf. Proposition 2.3.

When g is odd and does not change sign on (0,∞), we obtain some qualitative properties
of the least energy solutions by means of polarizations.

Theorem 1.4. Assume that 2 ≤ p < N and α ∈ ((N − 2p)+, N). If g satisfies (g1)–(g3)
and, in addition, g is odd and has constant sign on (0,∞), then every least energy solution
of (1.1) has constant sign and it is radially symmetric with respect to some point in RN and
radially decreasing.

We point out that the restrictions p ≥ 2 and α ∈ ((N − 2p)+, N) in Theorems 1.3 and 1.4
are the same as those in Theorem 1.2 in order to guarantee the use of (1.7).

We conclude observing that Theorems 1.3 and 1.4 improve [2, Theorem 2.2] and [4, The-
orem 2.2] because we are considering more general nonlinearities, and extend [20, Theorem
1] and [20, Theorem 4] to the p-Laplacian case.

The paper is organized as follows. Section 2 is devoted to the proof of Theorem 1.3. In
Section 3 we provide the proof of Theorem 1.4.

Notations.
• Br(x0) denotes the ball in RN centered at x0 ∈ RN with radius r > 0. When x0 = 0,

we set Br = Br(0);
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• ∥ · ∥Lp(E) denotes the usual norm in the space Lp(E), with E ⊂ RN measurable set
and 1 ≤ p ≤ ∞. When E = RN we set ∥ · ∥p = ∥ · ∥Lp(RN );

• W 1,p(RN) is the usual Sobolev space endowed with the norm

∥u∥1,p =
(∫

RN

(|∇u|p + |u|p) dx
) 1

p

;

• By
(
W 1,p(RN)

)∗ we indicate the dual space of W 1,p(RN) with dual norm ∥ · ∥∗.

2. Existence of least energy solutions

In this section we prove the existence of a least energy solution. To reach our goal, we
construct a sequence of almost critical points of J at the level cMP given in (1.9) that fulfills
asymptotically (1.7). In this regard, we provide the following definitions. We say that
(un)n∈N ⊂ W 1,p(RN) is a Pohožaev–Palais–Smale sequence for J if

(J (un))n∈N is bounded in R,
∥J ′(un)∥∗→ 0,

P(un)→ 0,

as n→∞. We say that (un)n∈N ⊂ W 1,p(RN) is a Pohožaev–Palais–Smale sequence at the
level d ∈ R if

J (un)→ d,

∥J ′(un)∥∗→ 0,

P(un)→ 0,

as n→∞.

Proposition 2.1. There exists a Pohožaev–Palais–Smale sequence (un)n∈N ⊂ W 1,p(RN) at
the level cMP.

Proof. We will break down the proof into three primary steps.
Step 1: Γ ̸= ∅.
For this purpose, we aim to find a function u ∈ W 1,p(RN) satisfying J (u) < 0. Define
G : W 1,p(RN)→R as follows

G(u) =
∫
RN

(Iα ∗G(u))G(u) dx.

Considering (g1), we can see that G exhibits continuity in Lp(RN) ∩ Lp∗(RN). Define

w(x) = t0 χB1(x),

where t0 is determined by (g3). Note that

G(w) = G(t0)
2

∫
B1

∫
B1

Iα(x− y) dxdy > 0. (2.1)

Hence, employing the density of W 1,p(RN) in Lp(RN) ∩ Lp∗(RN) and (2.1), there exists a
function v ∈ W 1,p(RN) satisfying G(v) > 0.
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For any T > 0 and x ∈ RN , let us define uT (x) = v
(
x
T

)
. Because of N − p < N < N + α,

we have that

J (uT ) =
TN−p

p

∫
RN

|∇v|p dx+ TN

p

∫
RN

|v|p dx− TN+α

2
G(v)→−∞ as T →∞.

Then, for T large enough, we can find a function u = uT such that J (u) < 0. Consequently,
Γ is non-empty. In particular, this leads us to the deduction that cMP is finite.
Step 2: cMP > 0.
Let u ∈ W 1,p(RN). Applying Theorem 1.1 with r = t = 2N

N+α
and µ = N −α, along with (g1)

and Sobolev inequality [1, Theorem 4.31], we can observe that

G(u) ≤ C∥G(u)∥22N
N+α

≤ C1

(
∥u∥pp + ∥u∥p

∗

p∗

)1+ α
N

≤ C2

[
∥u∥p(1+

α
N
)

p + ∥u∥p
∗(1+ α

N
)

p∗

]
≤ C3

[
∥u∥p(1+

α
N
)

p + ∥∇u∥
p(N+α

N−p
)

p

]
.

Hence, there exists δ > 0 such that, if ∥u∥1,p ≤ δ, then

G(u) ≤ 1

p
∥u∥p1,p.

Therefore, for all ∥u∥1,p ≤ δ, we have

J (u) =
1

p
∥u∥p1,p −

1

2
G(u) ≥ 1

2p
∥u∥p1,p.

Now, observe that, when γ ∈ Γ it results that

∥γ(1)∥1,p > δ.

Indeed, assuming by contradiction that ∥γ(1)∥1,p ≤ δ, we would get

J (γ(1)) ≥ 1

2p
∥γ(1)∥p1,p ≥ 0,

and this contradicts the fact that γ ∈ Γ. Then, since

∥γ(0)∥1,p = 0 < δ < ∥γ(1)∥1,p,
we can use the intermediate value theorem to find a value τ̄ ∈ (0, 1) such that ∥γ(τ̄)∥1,p = δ,
and so

δp

2p
≤ J (γ(τ̄)) ≤ sup

t∈[0,1]
J (γ(t)).

From the arbitrariness of γ ∈ Γ, we can conclude that

cMP ≥ δp

2p
> 0.

Step 3: Conclusion.
Inspired by [11], we introduce the map Ψ : R×W 1,p(RN)→W 1,p(RN) defined by

Ψ(σ, v)(x) = v(e−σx),
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where we endow R×W 1,p(RN) with the norm

∥(σ, v)∥R×W 1,p(RN ) = (|σ|p + ∥v∥p1,p)
1
p .

We note that, for every (σ, v) ∈ R×W 1,p(RN),

J (Ψ(σ, v)) =
e(N−p)σ

p

∫
RN

|∇v|p dx+ eNσ

p

∫
RN

|v|p dx− e(N+α)σ

2
G(u).

By (g1), we deduce that J ◦Ψ is Frechét differentiable on R×W 1,p(RN). Define

Γ̃ =
{
γ̃ ∈ C([0, 1];R×W 1,p(RN)) : γ̃(0) = (0, 0) and (J ◦Ψ)(γ̃(1)) < 0

}
.

It readily seen that the mountain pass levels of J and J ◦Ψ coincide, that is

cMP = inf
γ∈Γ̃

sup
τ∈[0,1]

(J ◦Ψ)(γ̃(τ)).

Employing the minimax principle [27, Theorem 2.8], we can find ((σn, vn))n∈N ⊂ R×W 1,p(RN)
such that

(J ◦Ψ)(σn, vn)→ cMP,

(J ◦Ψ)′(σn, vn)→ 0 in (R×W 1,p(RN))∗.

Now, observe that, for every σ, h ∈ R and v, w ∈ W 1,p(RN), it holds

(J ◦Ψ)′(σ, v)(h,w) =
(N − p)h

p
e(N−p)σ

∫
RN

|∇v|p dx+ e(N−p)σ

∫
RN

|∇v|p−2∇v∇w dx

+
Nh

p
eNσ

∫
RN

|v|p dx+ eNσ

∫
RN

|v|p−2v w dx

− (N + α)h

2
e(N+α)σ

∫
RN

(Iα ∗G(v))G(v) dx

− e(N+α)σ

∫
RN

(Iα ∗G(v)) g(v)w dx.

On the other hand, for all v, w ∈ W 1,p(RN),

J ′(Ψ(σ, v))(Ψ(σ,w)) = e(N−p)σ

∫
RN

|∇v|p−2∇v∇w dx+ eNσ

∫
RN

|v|p−2v w dx

− e(N+α)σ

∫
RN

(Iα ∗G(v)) g(v)w dx

and

P(Ψ(σ, v))h =
(N − p)h

p
e(N−p)σ

∫
RN

|∇v|p dx+ Nh

p
eNσ

∫
RN

|v|p dx

− (N + α)h

2
e(N+α)σ

∫
RN

(Iα ∗G(v))G(v) dx.

Therefore, for every (h,w) ∈ R×W 1,p(RN),

(J ◦Ψ)′(σn, vn)(h,w) = J ′(Ψ(σn, vn))(Ψ(σn, w)) + P(Ψ(σn, vn))h.

Then it suffices to take un = Ψ(σn, vn) to achieve the conclusion. □
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Lemma 2.1. If (un)n∈N ⊂ W 1,p(RN) is a Pohožaev-Palais-Smale sequence of J , then (un)n∈N
is bounded in W 1,p(RN). Moreover, there exists u ∈ W 1,p(RN) such that, up to a subsequence,
as n→∞,

un ⇀ u in W 1,p(RN),
un →u in Lr

loc(RN) for all r ∈ [1, p∗),
un →u a.e. in RN .

(2.2)

Proof. Let us observe that, for all n ∈ N,

J (un)−
1

N + α
P(un) =

α + p

p(N + α)

∫
RN

|∇un|p dx+
α

p(N + α)

∫
RN

|un|p dx.

Since (J (un))n∈N is bounded and P(un)→ 0, as n→∞, we readily deduce that (un)n∈N is
bounded in W 1,p(RN). Using that W 1,p(RN) is reflexive (see [1, Theorem 3.6]) and that
W 1,p(RN) is compactly embedded in Lr

loc(RN) for all r ∈ [1, p∗) (see [1, Theorem 6.3]), we
can conclude that (2.2) is valid. □

Subsequently, we demonstrate an almost everywhere convergence of the gradients of Pohožaev–
Palais–Smale sequences. First we recall a result appeared in [10] (see also [8]).

Theorem 2.1. [10, Theorem 1] Let Ω ⊂ RN be an open set and p ∈ (1,∞). For ε > 0 and
t ∈ R, put

Sε(t) =

 t if |t| ≤ ε,

ε
t

|t|
if |t| ≥ ε,

and tk = Sk(t) for k ≥ 1.

Let (un)n∈N be a bounded sequence of W 1,p
loc (Ω). Then,

• There is a subsequence, still denoted by (un)n∈N, and a function u ∈ W 1,p
loc (Ω) such

that un →u a.e. in Ω, as n→∞.
• If, furthermore, we assume that for all φ ∈ C∞

c (Ω) and for all k ≥ k0:

lim sup
n→∞

∫
Ω

|∇un|p−2∇un∇(φSε(un − uk)) dx ≤ oε(1),

where oε(1)→ 0 as ε→ 0, then there exists a subsequence, still denoted by (un)n∈N,
such that

∇un→∇u a.e. in RN .

Lemma 2.2. Let (un)n∈N ⊂ W 1,p(RN) be a Pohožaev–Palais–Smale sequence of J . Then
there exists u ∈ W 1,p(RN) such that, up to a subsequence, as n→∞,

∇un →∇u a.e. in RN ,

|∇un|p−2∇un ⇀ |∇u|p−2∇u in
(
L

p
p−1 (RN)

)N
.

Proof. By Lemma 2.1, we know that (un)n∈N is bounded in W 1,p(RN) and that, up to a
subsequence, un →u a.e. in RN , for some u ∈ W 1,p(RN). Fix φ ∈ C∞

c (RN). Then we see
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that ∫
RN

|∇un|p−2∇un∇(φSε(un − uk)) dx

= −
∫
RN

|un|p−2unφSε(un − uk) dx+

∫
RN

(Iα ∗G(un))g(un)) (φSε(un − uk)) dx

+ ⟨J ′(un), φSε(un − uk)⟩
= (I)n,ε,k + (II)n,ε,k + (III)n,ε,k.

(2.3)

Now, first note that
|Sε(t)| ≤ ε for all ε > 0 and all t ∈ R. (2.4)

Exploiting the Hölder inequality, the boundedness of (un)n∈N in Lp(RN) and (2.4), we have,
for all n ∈ N, ε > 0 and k ≥ 1,

|(I)n,ε,k| ≤
∫
RN

|un|p−1|φSε(un − uk)| dx

≤ ε

(∫
RN

|un|p dx
) p−1

p
(∫

RN

|φ|p dx
) 1

p

≤ C1 ε .

(2.5)

To estimate (II)n,ε,k, we utilize Theorem 1.1, the growth assumption (g1), condition (2.4),
the Hölder inequality, and the fact that (un)n∈N is bounded in Lp(RN) ∩ Lp∗(RN), to obtain
that, for all n ∈ N, ε > 0 and k ≥ 1,

|(II)n,ε,k| ≤ C2

(∫
RN

|G(un)|
2N

N+α dx

)N+α
2N

(∫
RN

|g(un)φSε(un − uk)|
2N

N+α dx

)N+α
2N

≤ C3 ε
(
∥un∥pp + ∥un∥p

∗

p∗

)N+α
2N

[∫
RN

|un|
(N+α)p−2N

N+α |φ|
2N

N+α dx

+

∫
RN

|un|
((N+α)p−2(N−p))N

(N−p)(N+α) |φ|
2N

N+α dx

]N+α
2N

≤ C4 ε

[(∫
RN

|un|p dx
) (N+α)p−2N

p(N+α)
(∫

RN

|φ|p dx
) 2N

p(N+α)

+

(∫
RN

|un|p
∗
dx

) (N+α)p−2(N−p)
p(N+α)

(∫
RN

|φ|p∗ dx
) 2(N−p)

p(N+α)

]N+α
2N

≤ C5 ε .

(2.6)

Concerning (III)n,ε,k, since ∥J ′(un)∥∗→ 0 and ∥φSε(un − uk)∥1,p is bounded independently
of ε, n, and k, we derive from

|(III)n,ε,k| ≤ ∥J ′(un)∥∗∥φSε(un − uk)∥1,p
that, as n→∞,

(III)n,ε,k → 0 uniformly with respect to ε > 0 and k > 0. (2.7)

Combining (2.3)–(2.7), we deduce that

lim sup
n→∞

∫
RN

|∇un|p−2∇un∇(φSε(un − uk)) dx ≤ C6 ε .



10 V. AMBROSIO, G. AUTUORI, AND T. ISERNIA

Then, invoking Theorem 2.1, there exists a subsequence, still denoted by (un)n∈N, such that
∇un →∇u a.e. in RN . Due to the boundedness of (|∇un|p−2∇un)n∈N in (L

p
p−1 (RN))N ,

we obtain that, up to a subsequence, |∇un|p−2∇un ⇀ |∇u|p−2∇u in (L
p

p−1 (RN))N . This
concludes the proof of Lemma 2.2. □

Let’s now examine the convergence of Pohožaev–Palais–Smale sequences.

Proposition 2.2. Let (un)n∈N ⊂ W 1,p(RN) be a Pohožaev–Palais–Smale sequence of J .
Then,
(1) either, up to a subsequence, un → 0 in W 1,p(RN),
(2) or there exists u ∈ W 1,p(RN) \ {0} such that J ′(u) = 0 and a sequence (xn)n∈N of points

in RN such that, un(· − xn)⇀ u in W 1,p(RN) as n→∞, up to a subsequence.

Proof. Suppose that condition (1) is not satisfied, meaning

lim inf
n→∞

∥un∥p1,p > 0. (2.8)

Let us prove that, for every q ∈ (p, p∗),

lim inf
n→∞

sup
x0∈RN

∥un∥Lq(B1(x0)) > 0. (2.9)

We argue indirectly. So, suppose that, for some q0 ∈ (p, p∗),

lim inf
n→∞

sup
x0∈RN

∥un∥Lq0 (B1(x0)) = 0. (2.10)

Thanks to the continuity of G and (g2), fixed ε > 0 we can find Cε > 0 such that

|G(t)|
2N

N+α ≤ ε
(
|t|p + |t|p∗

)
+ Cε|t|q0 for all t ∈ R. (2.11)

Now we note that given q ∈ [p, p∗), we have, for every u ∈ W 1,p(RN),

∥u∥qq ≤ C

(
sup

x0∈RN

∥u∥qLq(B1(x0))

)1− p
q

∥u∥p1,p. (2.12)

Indeed, fixed x0 ∈ RN , it follows from the Hölder inequality and the Sobolev embedding
W 1,p(B1(x0)) ⊂ Lp∗(B1(x0)) (see [1, Theorem 4.12]) that

∥u∥qLq(B1(x0))
≤
(∫

B1(x0)

|u|
N(q−p)

p dx

) p
N
(∫

B1(x0)

|u|p∗ dx
) p

p∗

≤ C1∥u∥q−p
Lq(B1(x0))

|B1|
pq−N(q−p)

Nq ∥u∥pW 1,p(B1(x0))

≤ C1|B1|
pq−N(q−p)

Nq

(
sup

x0∈RN

∥u∥qLq(B1(x0))

)1− p
q

∥u∥pW 1,p(B1(x0))
,

where C1 is independent of x0. Covering RN by balls with radius 1 in such a way that each
point of RN is contained in at most N + 1 balls, we deduce that (2.12) holds.
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Then, using (2.11), Lemma 2.1, (2.12), and (2.10), we deduce that

lim inf
n→∞

∫
RN

|G(un)|
2N

N+α dx

≤ lim inf
n→∞

[
ε

(∫
RN

|un|p dx+
∫
RN

|un|p
∗
dx

)
+ Cε

∫
RN

|un|q0 dx
]

≤ C ε+C ′
ε lim inf

n→∞

(
sup

x0∈RN

∫
B1(x0)

|un|q0 dx

)1− p
q

≤ C ε .

(2.13)

By (2.13) and considering that ε > 0 is arbitrary, we obtain

lim inf
n→∞

∥G(un)∥ 2N
N+α

= 0. (2.14)

On the other hand, exploiting the definition of P(un), (2.8) and the fact that P(un)→ 0, as
n→∞, we have

lim inf
n→∞

∫
RN

(Iα ∗G(un))G(un) dx

= lim inf
n→∞

{
2

p
· N − p

N + α

∫
RN

|∇un|p dx+
2

p
· N

N + α

∫
RN

|un|p dx−
2

N + α
P(un)

}
> 0.

(2.15)

Putting together (2.15), Theorem 1.1 and (2.14), we get

0 < lim inf
n→∞

∫
RN

(Iα ∗G(un))G(un) dx ≤ C ′ lim inf
n→∞

∥G(un)∥22N
N+α

= 0,

which is a contradiction. Therefore, (2.9) is valid. Consequently, up to a translation, we may
suppose that there exists a q ∈ (p, p∗) such that

lim inf
n→∞

∥un∥Lq(B1) > 0. (2.16)

Using Lemma 2.1, we can find u ∈ W 1,p(RN) such that, up to a subsequence, (2.2) holds.
Clearly, (2.2) and (2.16) ensure that u ̸≡ 0. Hereafter, we show that J ′(u) = 0. By (2.2),
(g1), the continuity of g, and the dominated convergence theorem, we see that

g(un)→ g(u) in Lr
loc(RN) for all r ∈

[
1,

2Np

(N + α)p− 2(N − p)

)
. (2.17)

Due to the boundedness of (un)n∈N in Lp(RN)∩Lp∗(RN) and assumption (g1), we can see that
(G(un))n∈N is bounded in L

2N
N+α (RN). From the continuity of G, it follows that G(un)→G(u)

a.e. in RN . So, G(un) ⇀ G(u) in L
2N

N+α (RN). Since Theorem 1.1 implies that the Riesz
potential is a linear continuous map from L

2N
N+α (RN) in L

2N
N−α (RN), we obtain that

Iα ∗G(un)⇀ Iα ∗G(u) in L
2N

N−α (RN). (2.18)

Putting together (2.17) and (2.18), and observing that

N − α

2N
+

(N + α)p− 2(N − p)

2Np
=
Np−N + p

Np
,
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we get

(Iα ∗G(un))g(un)⇀ (Iα ∗G(u))g(u) in Lr(RN) for all r ∈
[
1,

Np

Np−N + p

)
. (2.19)

Exploiting Lemma 2.2 and (2.19), we find that, for all φ ∈ C∞
c (RN),∫

RN

(
|∇u|p−2∇u∇φ+ |u|p−2uφ

)
dx−

∫
RN

(Iα ∗G(u)) g(u)φdx

= lim
n→∞

[∫
RN

(
|∇un|p−2∇un∇φ+ |un|p−2un φ

)
dx−

∫
RN

(Iα ∗G(un)) g(un)φdx
]
= 0.

The assertion follows by the density of C∞
c (RN) in W 1,p(RN) (see [1, Corollary 3.23]). □

In passing from weak solutions to least energy solutions we utilize the following Proposi-
tion 2.3 to construct an optimal trajectory. This result follows from the Pohožaev identity
(1.7) and permits to associate to any variational solution to (1.1) a suitable path of Γ. The
proof is inspired by an argument found in [12, Lemma 2.1].

Proposition 2.3. Let u ∈ W 1,p(RN)\{0} be a solution of (1.1). Then, there exists a t0 > 1
and a path γ ∈ C

(
[0, 1];W 1,p(RN)

)
such that

γ(0) = 0,

γ(1/t0) = u,

J (γ(t)) < J (u) for all t ∈ [0, 1] \ {1/t0},
J (γ(1)) < 0.

Proof. Let us define the path ϕ : [0,∞)→W 1,p(RN) by setting

ϕ(t)(x) =

{
u
(x
t

)
if t > 0,

0 if t = 0.

For all t > 0, we have

∥ϕ(t)∥p1,p = tN−p

∫
RN

|∇u|p dx+ tN
∫
RN

|u|p dx,

and so ϕ ∈ C([0,∞);W 1,p(RN)). Now, we compute J ◦ ϕ:

J (ϕ(t)) =
tN−p

p

∫
RN

|∇u|p dx+ tN

p

∫
RN

|u|p dx− tN+α

2

∫
RN

(Iα ∗G(u))G(u) dx

=

(
tN−p

p
− (N − p)tN+α

p(N + α)

)∫
RN

|∇u|p dx+
(
tN

p
− NtN+α

p(N + α)

)∫
RN

|u|p dx,

where in the last equality we used P(u) = 0. Since

d

dt
(J (ϕ(t))) = tN+α−1

[(
1

tα+p
− 1

)
N − p

p

∫
RN

|∇u|p dx+
(

1

tα
− 1

)
N

p

∫
RN

|u|p dx
]
,
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we deduce that
d

dt
(J (ϕ(t))) = 0 if and only if t = 1,

d

dt
(J (ϕ(t))) > 0 if and only if 0 < t < 1,

d

dt
(J (ϕ(t))) < 0 if and only if t > 1.

Thus, J ◦ ϕ attains its global maximum at t = 1. Finally,

lim
t→∞

J (ϕ(t)) = −∞,

so there exists t0 > 1 such that J (ϕ(t0)) < 0. Taking the path γ(t)(x) = ϕ(t0t)(x) for all
t ∈ [0, 1] and x ∈ RN , we obtain the assertion. □

Next we give the proof of Theorem 1.3.

Proof of Theorem 1.3. From Propositions 2.1 and 2.2, we can deduce the existence of a
Pohožaev–Palais–Smale sequence (un)n∈N ⊂ W 1,p(RN) of J at level cMP. Moreover, after
passing to a subsequence, we may assume that un ⇀ u in W 1,p(RN), un→u and ∇un→∇u
a.e. in RN , for some u ∈ W 1,p(RN)\{0} which is a weak solution to (1.1). Using Theorem 1.2,
un →u and ∇un →∇u a.e. in RN , Fatou’s lemma, and the fact that P(un)→ 0 as n→∞,
we have

J (u) = J (u)− 1

N + α
P(u)

=
α + p

p(N + α)

∫
RN

|∇u|p dx+ α

p(N + α)

∫
RN

|u|p dx

≤ lim inf
n→∞

(
α + p

p(N + α)

∫
RN

|∇un|p dx+
α

p(N + α)

∫
RN

|un|p dx
)

= lim inf
n→∞

(
J (un)−

1

N + α
P(un)

)
= lim inf

n→∞
J (un) = cMP.

(2.20)

As u is a nontrivial weak solution to (1.1), we can infer from the definition of cLE provided
in (1.8) and relation (2.20), that the following holds

cLE ≤ J (u) ≤ cMP. (2.21)

Now, let v ∈ W 1,p(RN) \ {0} be an arbitrary weak solution to (1.1) with J (v) ≤ J (u). If we
lift v to a path as in Proposition 2.3, then the definition of mountain pass level ensures that

J (v) ≥ cMP,

which together with (2.21) gives

J (u) ≥ J (v) ≥ cMP ≥ J (u) ≥ cLE.

Accordingly, J (v) = J (u) = cMP = cLE. The proof of the theorem is now complete. □

Lastly, we present a valuable result that enables us to deduce the compactness, with
translation invariance, of the set of least energy solutions

SLE =
{
u ∈ W 1,p(RN) : J (u) = cLE and J ′(u) = 0

}
.
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Corollary 2.1. Suppose that the assumptions of Proposition 2.2 are satisfied. If

lim inf
n→∞

∥un∥p1,p > 0 and lim sup
n→∞

J (un) ≤ cLE,

then we can find u ∈ W 1,p(RN) \ {0} such that J ′(u) = 0, and (xn)n∈N ⊂ RN such that, up
to a subsequence, un(· − xn)→u in W 1,p(RN) as n→∞.

Proof. According to Proposition 2.2, up to a subsequence and translations, we may suppose
that, as n→∞, un ⇀ u in W 1,p(RN), un→u and ∇un→∇u a.e. in RN , for some u ∈
W 1,p(RN) \ {0} that satisfies (1.1). Then, as in the proof of Theorem 1.3, we see that

cLE ≤ J (u)− 1

N + α
P(u)

=
α + p

p(N + α)

∫
RN

|∇u|p dx+ α

p(N + α)

∫
RN

|u|p dx

≤ lim sup
n→∞

(
α + p

p(N + α)

∫
RN

|∇un|p dx+
α

p(N + α)

∫
RN

|un|p dx
)

= lim sup
n→∞

(
J (un)−

1

N + α
P(un)

)
= lim sup

n→∞
J (un) ≤ cLE,

and thus
α + p

p(N + α)

∫
RN

|∇u|p dx+ α

p(N + α)

∫
RN

|u|p dx

= lim sup
n→∞

(
α + p

p(N + α)

∫
RN

|∇un|p dx+
α

p(N + α)

∫
RN

|un|p dx
)
.

Using that W 1,p(RN) is uniformly convex for all p ∈ (1,∞) (see [1, Theorem 3.6]), and
invoking [9, Proposition 3.32], we deduce that un → u in W 1,p(RN). □

3. Qualitative properties of least energy solutions

In this section we establish sign and symmetry properties of the least energy solutions of
(1.1). We first prove an auxiliary result.

Lemma 3.1. Let γ ∈ Γ and t∗ ∈ (0, 1) such that

J (γ(t)) < J (γ(t∗)) = cMP for all t ∈ [0, 1] \ {t∗}. (3.1)

Then J ′(γ(t∗)) = 0.

Proof. Arguing indirectly, assume that J ′(γ(t∗)) ̸= 0. By continuity, we can select ε, δ > 0
such that

inf {∥J ′(v)∥∗ : ∥v − γ(t∗)∥1,p ≤ δ} > 8 ε

δ
.

Using the deformation lemma [27, Lemma 2.3] withX = W 1,p(RN), S = {γ(t∗)} and c = cMP,
we can find η ∈ C([0, 1]×W 1,p(RN);W 1,p(RN)) such that
(i) η(t, u) = u if t = 0 or if u /∈ J −1([cMP − 2 ε, cMP + 2 ε]) ∩ S2δ,
(ii) η(1,J cMP+ε ∩ S) ⊂ J cMP−ε,
(iii) η(t, ·) is an homeomorphism of W 1,p(RN), for all t ∈ [0, 1],
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(iv) ∥η(t, u)− u∥1,p ≤ δ for all u ∈ W 1,p(RN) and t ∈ [0, 1],
(v) J (η(·, u)) is non increasing for all u ∈ W 1,p(RN),
(vi) J (η(t, u)) < cMP for all u ∈ J cMP ∩ Sδ and t ∈ (0, 1],

where J d(u) = {u ∈ W 1,p(RN) : J (u) ≤ d} and Sδ = {u ∈ W 1,p(RN) : ∥u∥1,p = δ} for d ∈ R
and δ > 0. Define ψ(t) = η(1, γ(t)) for all t ∈ [0, 1]. Using γ ∈ Γ and (i), we see that

ψ(0) = η(1, γ(0)) = η(1, 0) = 0,

and thanks to (i) and (v), we get

J (ψ(1)) = J (η(1, γ(1))) ≤ J (η(0, γ(1))) = J (γ(1)) < 0.

Therefore, ψ ∈ Γ. Now, in view of (v), (i), and (3.1), we have that

J (ψ(t)) ≤ J (η(0, γ(t))) = J (γ(t)) < cMP for all t ∈ [0, 1] \ {t∗},

On the other hand, (ii) implies

J (ψ(t∗)) ≤ cMP − ε < cMP.

As a result,

sup
t∈[0,1]

J (ψ(t)) < cMP,

and this is in contrast with the definition of cMP. The proof of the lemma is now complete. □

Let us now show that if g is odd and has constant sign in (0,∞), then also least energy
solutions have constant sign.

Proposition 3.1. If g is odd and does not change sign on (0,∞), then every least energy
solution u ∈ W 1,p(RN) of (1.1) has constant sign.

Proof. Suppose that g ≥ 0 on (0,∞). Let u ∈ W 1,p(RN) be a least energy solution of (1.1).
By Proposition 2.3, we can find a t0 > 1 and a path γ ∈ Γ such that

γ(1/t0) = u,

J (γ(t)) < J (u) for all t ∈ [0, 1] \ {1/t0}.
(3.2)

Due to the fact that G is even, for each v ∈ W 1,p(RN), it holds

J (|v|) = J (v). (3.3)

Hence, (3.3) and (3.2) give

J (|γ(t)|) = J (γ(t)) < J (u) = J (|γ(1/t0)|) for all t ∈ [0, 1] \ {1/t0}.

This together with J (|γ(1/t0)|) = J (|u|) = J (u) = cMP and Lemma 3.1 implies that
J ′(|u|) = 0. Consequently, |u| satisfies

−∆p|u|+ |u|p−1 = (Iα ∗G(|u|))g(|u|) in RN .

From Theorem 1.2, we know that |u| is continuous and bounded in RN . An application of
the Harnack inequality [25, Theorem 1.2] implies that |u| > 0 in RN and so u has constant
sign. □
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Next we prove symmetry properties of least energy solutions by means of a polarization
argument. We first recall some elements of the theory of polarization (see [28]). Assume
that H ⊂ RN is a closed half–space and that σH is the reflection with respect to ∂H. The
polarization uH of u : RN →R is defined for x ∈ RN by

uH(x) =

{
max{u(x), u(σH(x))} if x ∈ H,
min{u(x), u(σH(x))} if x ∈ RN \ H.

We will use the next fundamental results.

Proposition 3.2. [28, Propositions 8.3.7 and 8.3.12] Let 1 ≤ p < ∞ and u ∈ W 1,p(RN).
Then uH ∈ W 1,p(RN) and it holds

∥∇uH∥p = ∥∇u∥p and ∥uH∥p = ∥u∥p.

Lemma 3.2. [19, Lemma 5.3] Let α ∈ (0, N), u ∈ L
2N

N+α (RN) and H ⊂ RN be a closed
half–space. If u ≥ 0 then∫

RN

∫
RN

u(x)u(y)

|x− y|N−α
dxdy ≤

∫
RN

∫
RN

uH(x)uH(y)

|x− y|N−α
dxdy,

with equality if and only if uH = u or uH = u ◦ σH.

Lemma 3.3. [19, Lemma 5.4] Let s ∈ [1,∞) and u ∈ Ls(RN) be such that u ≥ 0. Then
there exist x0 ∈ RN and a nonincreasing function v : (0,∞)→R such that u(x) = v(|x−x0|)
for a.e. x ∈ RN if and only if uH = u or uH = u ◦ σH for every closed half–space H ⊂ RN .

Now, we are in the position to prove that least energy solutions are radial.

Proposition 3.3. If g is odd and does not change sign in (0,∞), then every least energy
solution u ∈ W 1,p(RN) of (1.1) is radially symmetric about a point.

Proof. Without loss of generality, we may assume that g ≥ 0 on (0,∞). Let u ∈ W 1,p(RN)
be a least energy solution of (1.1). Take a closed half–space H ⊂ RN . By Proposition 3.1,
we may suppose that u > 0. By virtue of Proposition 2.3, there exist a t0 > 1 and a path
γ ∈ Γ such that

γ(t) ≥ 0 for all t ∈ [0, 1],

γ(1/t0) = u,

J (γ(t)) < J (u) for all t ∈ [0, 1] \ {1/t0}.
(3.4)

Consider γH : [0, 1]→W 1,p(RN) given by γH(t) = (γ(t))H. According to [26, Corollary 2.40],
we know that γH ∈ C([0, 1];W 1,p(RN)). Note that, since G is nondecreasing,

G
(
uH
)
= G(u)H, (3.5)

and therefore, exploiting Lemma 3.2 and Proposition 3.2, we have that

J
(
γH(t)

)
≤ J (γ(t)) for all t ∈ [0, 1]. (3.6)

In particular, γH ∈ Γ, and so, from the definition of cMP,

max
t∈[0,1]

J
(
γH(t)

)
≥ cMP.
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Combining (3.6) and (3.4), we find

J
(
γH(t)

)
≤ J (γ(t)) < J (u) = cMP for all t ∈ [0, 1] \ {1/t0}.

Therefore,

J
(
uH
)
= J

(
γH(1/t0)

)
= cMP = J (γ(1/t0)) = J (u).

In particular, in view of Proposition 3.2, Lemma 3.2 and (3.5), we have that either G(u)H =
G(u) or G

(
uH
)
= G(u ◦ σH).

Suppose first that G(u)H = G(u). Recalling that G is nondecreasing, it results that∫ u(x)

u(σH(x))

g(τ) dτ = G(u(x))−G(u(σH(x))) = G(u(x))H −G(u(σH(x))) ≥ 0 for all x ∈ H.

This implies that either u(σH(x)) ≤ u(x) or g = 0 in [u(x), u(σH(x))]. Consequently,

g
(
uH
)
= g(u) on RN . (3.7)

Since J
(
γH(t)

)
< cMP for all t ∈ [0, 1] \ {1/t0}, we can apply Lemma 3.1 to γH to deduce

that J ′ (uH) = 0. Therefore, for all φ ∈ W 1,p(RN),∫
RN

|∇uH|p−2∇uH∇φdx+
∫
RN

|uH|p−2uH φdx =

∫
RN

(Iα ∗G(u)) g(u)φdx, (3.8)

where we have usedG
(
uH
)
= G(u) and (3.7). Subtracting (3.8) by (1.6) and using φ = u−uH

as test function, we have∫
RN

(
|∇u|p−2∇u− |∇uH|p−2∇uH

) (
∇u−∇uH

)
dx

+

∫
RN

(
|u|p−2u− |uH|p−2uH

) (
u− uH

)
dx = 0,

which combined with the Simon inequality [24, formula (2.2)]

(|x|p−2x− |y|p−2y)(x− y) ≥ Cp|x− y|p for all x, y ∈ RN and p ≥ 2,

yields Cp∥u− uH∥p1,p ≤ 0. Hence, u = uH.
In the case in which G

(
uH
)
= G(u ◦ σH), we can proceed in a similar way to deduce that

uH = u ◦ σH. Due to the arbitrariness of H, it follows from Lemma 3.3 that u is radially
symmetric and radially decreasing. □

Proof of Theorem 1.4. This is a direct consequence of Propositions 3.1 and 3.3. □
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