We consider the Cauchy problem for a class of non-linear evolution equations in the form (Formula presented.) here, L(∂t,∂x) is a linear partial differential operator with constant coefficients, of order m≥1 with respect to the time variable t, and ℓ is a natural number satisfying 0≤ℓ≤m-1. For several different choices of L, many authors have investigated the existence of global (in time) solutions to this problem when F(s)=|s|p is a power non-linearity, looking for a critical exponentpc>1 such that global small data solutions exist in the supercritical case p>pc, whereas no global weak solutions exist, under suitable sign assumptions on the data, in the subcritical case 1
Critical Non-linearity for some Evolution Equations with Fujita-type Critical Exponent / Girardi, Giovanni. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 32:1(2025). [10.1007/s00030-024-01012-8]
Critical Non-linearity for some Evolution Equations with Fujita-type Critical Exponent
Giovanni Girardi
2025-01-01
Abstract
We consider the Cauchy problem for a class of non-linear evolution equations in the form (Formula presented.) here, L(∂t,∂x) is a linear partial differential operator with constant coefficients, of order m≥1 with respect to the time variable t, and ℓ is a natural number satisfying 0≤ℓ≤m-1. For several different choices of L, many authors have investigated the existence of global (in time) solutions to this problem when F(s)=|s|p is a power non-linearity, looking for a critical exponentpc>1 such that global small data solutions exist in the supercritical case p>pc, whereas no global weak solutions exist, under suitable sign assumptions on the data, in the subcritical case 1File | Dimensione | Formato | |
---|---|---|---|
Girardi v2.pdf
embargo fino al 16/11/2025
Descrizione: Girardi NODEA
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
449 kB
Formato
Adobe PDF
|
449 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
s00030-024-01012-8.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
662.5 kB
Formato
Adobe PDF
|
662.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.