We consider the Cauchy problem for a class of non-linear evolution equations in the form (Formula presented.) here, L(∂t,∂x) is a linear partial differential operator with constant coefficients, of order m≥1 with respect to the time variable t, and ℓ is a natural number satisfying 0≤ℓ≤m-1. For several different choices of L, many authors have investigated the existence of global (in time) solutions to this problem when F(s)=|s|p is a power non-linearity, looking for a critical exponentpc>1 such that global small data solutions exist in the supercritical case p>pc, whereas no global weak solutions exist, under suitable sign assumptions on the data, in the subcritical case 1

Critical Non-linearity for some Evolution Equations with Fujita-type Critical Exponent / Girardi, Giovanni. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 32:1(2025). [10.1007/s00030-024-01012-8]

Critical Non-linearity for some Evolution Equations with Fujita-type Critical Exponent

Giovanni Girardi
2025-01-01

Abstract

We consider the Cauchy problem for a class of non-linear evolution equations in the form (Formula presented.) here, L(∂t,∂x) is a linear partial differential operator with constant coefficients, of order m≥1 with respect to the time variable t, and ℓ is a natural number satisfying 0≤ℓ≤m-1. For several different choices of L, many authors have investigated the existence of global (in time) solutions to this problem when F(s)=|s|p is a power non-linearity, looking for a critical exponentpc>1 such that global small data solutions exist in the supercritical case p>pc, whereas no global weak solutions exist, under suitable sign assumptions on the data, in the subcritical case 1
File in questo prodotto:
File Dimensione Formato  
Girardi v2.pdf

embargo fino al 16/11/2025

Descrizione: Girardi NODEA
Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Tutti i diritti riservati
Dimensione 449 kB
Formato Adobe PDF
449 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
s00030-024-01012-8.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 662.5 kB
Formato Adobe PDF
662.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/336894
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact