We study the existence of solutions for a class of boundary value problems on the half line, associated to a third order ordinary differential equation governed by the Φ-Laplacian operator. The equation contains a Carathéodory function satisfying a weak growth condition of Winter-Nagumo type which is assumed to be continuous and it may vanish in a subset of zero Lebesgue measure, so that the problem can be singular. The approach we follow is based on fixed point techniques combined with the upper and lower solutions method.

Existence results for singular nonlinear BVPs in the critical regime / Anceschi, Francesca; Autuori, Giuseppina; Papalini, Francesca. - In: ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS. - ISSN 1417-3875. - ELETTRONICO. - 35(2024), pp. 1-34. [10.14232/ejqtde.2024.1.35]

Existence results for singular nonlinear BVPs in the critical regime

Anceschi, Francesca
;
Autuori, Giuseppina;Papalini, Francesca
2024-01-01

Abstract

We study the existence of solutions for a class of boundary value problems on the half line, associated to a third order ordinary differential equation governed by the Φ-Laplacian operator. The equation contains a Carathéodory function satisfying a weak growth condition of Winter-Nagumo type which is assumed to be continuous and it may vanish in a subset of zero Lebesgue measure, so that the problem can be singular. The approach we follow is based on fixed point techniques combined with the upper and lower solutions method.
File in questo prodotto:
File Dimensione Formato  
Anceschi_Autuori_Papalini_EJQTDE24.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 526.34 kB
Formato Adobe PDF
526.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/334712
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact