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Abstract. We study the existence of solutions for a class of boundary value problems
on the half line, associated to a third order ordinary differential equation of the type(

Φ(k(t, u′(t))u′′(t))
)′
(t) = f

(
t, u(t), u′(t), u′′(t)

)
, a.a. t ∈ R+

0 .

The prototype for the operator Φ is the Φ-Laplacian; the function k is assumed to be
continuous and it may vanish in a subset of zero Lebesgue measure, so that the problem
can be singular; finally, f is a Carathéodory function satisfying a weak growth condition
of Winter–Nagumo type. The approach we follow is based on fixed point techniques
combined with the upper and lower solutions method.
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1 Introduction

In this paper we are concerned with the existence of solutions to boundary value problems
(BVPs) on the half line, associated to strongly nonlinear third order ordinary differential equa-
tions, of the type{(

Φ
(
k(·, u′(·))u′′(·)

))′
(t) = f

(
t, u(t), u′(t), u′′(t)

)
, a.a. t ∈ R+

0 ,

u(0) = u0, u′(0) = ν1, u′(+∞) = ν2.
(P)

Here, the operator Φ : R → R is the so-called Φ-Laplacian and f : R+
0 × R3 → R is a

Carathéodory function satisfying a weak growth condition of Winter–Nagumo type. Moreover,
the function k : R+

0 × R → R+
0 is continuous and it may vanish in a subset of zero Lebesgue

measure, so that problem (P) is possibly singular. Finally, u0, ν1, ν2 ∈ R are fixed real numbers.
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According to the existing literature, Φ-Laplacian type equations involve a strictly increa-
sing homeomorphism

Φ : (−a, a) → (−b, b), with 0 < a, b ≤ +∞,

such that Φ(0) = 0. When a = b = +∞ the main prototype for the Φ-Laplacian is the classical
r-Laplacian Φ(s) = |s|r−2s, with r > 1. When a = +∞ and b < +∞, the map Φ is usually called
non-surjective or bounded Φ-Laplacian and its main prototype is the mean curvature operator

Φ(s) =
s√

1 + s2
, s ∈ R,

cf. [4, 21]. When a < +∞, the Φ-Laplacian is said to be singular and in this case the main
prototype is the relativistic operator

Φ(s) =
s√

1 − s2
, s ∈ (−1, 1),

see [5–7, 15, 28]. Further details on Φ-Laplacians BVPs can be found also in [18, 22].
One of the main reasons to study problem (P) is the great amount of applications of

the Φ-Laplace operator in different fields of physics and applied mathematics, such as non-
Newtonian fluid theory, diffusion of flows in porous media, nonlinear elasticity, theory of
capillary surfaces, see e.g. [20, 25], and, more recently, the modeling of glaciology, see for
instance [12, 23, 29]. Moreover, problems like (P) find many applications in fluid dynamics
as generalizations of the Blasius problem modeling the flat plate problem in boundary layer
theory for viscous fluids, cf. [16].

Due to the wide class of their applications, as well as for a more theoretical interest, several
papers have been devoted to Φ-Laplacian type equations. Many contributions concern BVPs
associated to a second order counterpart of (P) involving equations of the type(

Φ(k(·, u(·))u′(·))
)′
(t) = f

(
t, u(t), u′(t)

)
, (1.1)

both in bounded and unbounded domains, under various assumptions for Φ and f , alongside
with different types of boundary conditions, see [8,14,27]. We also mention [30] for third-order
BVPs and [26] for higher-order BVPs in the half-line.

Recently, the multiplicity of solutions to differential equations with Φ-Laplacian has
been largely investigated under periodic, Dirichlet or Neumann boundary conditions. In
[17, 19] second order differential equations posed in bounded domains are considered by
means of the fixed point index theory, while in [3] the authors find positive unbounded solu-
tions for singular second-order BVPs set on the half-line.

We prove the solvability of (P) assuming that f may have critical rate of decay −1 at infin-
ity, that is f (t, ·, ·, ·) ∼ 1/t as t → +∞, cf. assumption (H3) and Remark 3.7. Together with
this assumption, we require a suitable form of the so-called Nagumo–Wintner condition on f ,
cf. (3.2) in assumption (H2). The Nagumo–Wintner condition allows us to obtain a priori esti-
mates on the derivatives of any solution u to (P) on compact intervals of R, see Lemma 3.11.
We stress the fact that the version of the Nagumo–Wintner condition most frequently used in
the literature for second order BVPs (see e.g. [10, 15]) is not useful in our case since it would
not provide the desired estimates on the higher order derivative of the solution. Hence, a
suitable adaptation of this condition turns out to be necessary in this context.

Our main result is Theorem 3.9 in which we prove the existence of a weak solution for
problem (P), in a sense that will be specified later. The proof is based on a fixed point
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technique, combined with the method of lower and upper solutions, named, respectively α

and β; see assumption (H1). More precisely, we start by proving the existence of a solution un

to the auxiliary boundary value problem{
(Φ(k(·, u′(·))u′′(·)))′ (t) = f (t, u(t), u′(t), u′′(t)), a.a. t ∈ In,

u(0) = u0, u′(0) = α′(0), u′(n) = β′(n),
(Pn)

where In = [0, n], with n ∈ N sufficiently large. Then, by means of the a priori estimates
provided by the Nagumo–Wintner condition, we show that a suitable sequence (xn)n, con-
structed by extending the functions un to the entire half-line, somehow converges to a solution
of (P).

Despite assumptions (H1)–(H3) seem rather technical, they are fulfilled by a wide class of
functions, as we shall prove in Section 4. In particular, they hold for BVPs of the following
type {(

Φ
(
k(·, u′(·))u′′(·)

))′
(t) = f1

(
t, u(t), u′(t)

)
f2(u′′(t)), a.a. t ∈ R+

0 ,

u(0) = u0, u′(0) = ν1, u′(+∞) = ν2,

where f1 and f2 satisfies suitable growth conditions and either

k(t, y) = k1(t)k2(y), with k1 ≥ 0, k2 > 0 in [ν1, ν2], or

k(t, y) = k1(t) + k2(y), with k1, k2 ≥ 0.

The critical rate for f , as well as the possibility of dealing with singular equations, have been
yet considered in [11], where the authors prove the existence of heteroclinic solutions for BVPs
associated to (1.1). A similar framework, with k = k(t), can be found in the recent work [2],
where BVPs associated to third order differential equations are studied in a compact domain,
and in [1], where the author proves existence results for integro-differential BVPs in a non-
critical regime and in the half-line. In this context, Theorem 3.9 throws a further light on the
subject treating third order equations and it extends Theorem 3.3 of [2] since the function k
is more general and solutions are obtained in the half-line. In particular, in [2] only solu-
tions on compact domains are considered and the function k only depends on t. Concerning
unbounded domains, a first contribution for the existence is contained in [1], where the sub-
critical regime for the asymptotic behavior of the right-hand side f is investigated together
with some non-existence results. The present work aims at providing a careful study of the
critical regime for the asymptotic behavior of f at the same time generalizing the choice of the
function k, which can also depend on the function v and not only on t.

By performing the change of variable v(t) = u′(t), our results apply to integro-differential
BVPs of the type

(
Φ(k(·, v(·))v′(·))

)′
(t) = f

(
t,
∫ t

0
v(s) ds, v(t), v′(t)

)
, a.a. t ∈ R+

0 ,

v(0) = ν1, v(+∞) = ν2.

Hence, when ν1 ̸= ν2, our analysis leads to the existence of heteroclinic solutions for such
BVPs. These solutions are relevant in the study of biological, physical and chemical models
since they represent a phase transition process in which the system evolves from an unstable
equilibrium to a stable one; see [24, 27, 31] and the references therein.

Finally, we highlight that a straightforward adaptation of Theorem 3.9 to problem (P) with
k = k(t, u(t), u′(t)) directly follows in R+

0 considering an additional monotonicity assumption
on the second variable for k = k(t, x, y) and it will be object of a forthcoming paper.
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The paper is organized as follows. In Section 2 we present some preliminary facts; in
particular, Theorem 2.2 is a very general result on the solvability of Φ-Laplacian BVPs in
compact intervals. Section 3 is devoted to our main result Theorem 3.9. Finally, in Section 4 we
present a class of examples of functions Φ, k and f satisfying the assumptions used throughout
the paper.

2 Preliminary results

In this section, we present an existence result for very general BVPs in compact real intervals,
that is Theorem 2.2. The proof of Theorem 2.2 is based on the forthcoming lemma. Even if the
proof of Lemma 2.1 somehow follows the proof of analogous results, cf. [2, Lemma 2.1] and
[10, Lemma 2.6], for the sake of clarity we prefer to show it completely.

Lemma 2.1. Let T > 0 be a fixed real number and denote by I = [0, T] ⊆ R and let p > 1 be fixed.
Let F : W2,p(I) → L1(I), v 7→ Fv ∈ L1(I), be a continuous operator for which there exists Θ ∈ L1(I)
such that

|Fυ(t)| ≤ Θ(t) for all υ ∈ W2,p(I) and a.a. t ∈ I. (2.1)

Let K : W2,p(I) ⊆ C(I; R) → C(I; R), υ 7→ Kυ ∈ C(I; R), be continuous with respect to the uniform
topology of C(I; R) and suppose that there exist k1, k2 ∈ C(I; R) satisfying

k1, k2 > 0 a.e. in I and
1
k1

,
1
k2

∈ Lp(I), (2.2)

such that
k1(t) ≤ Kυ(t) ≤ k2(t) for all υ ∈ W2,p(I) and a.a. t ∈ I. (2.3)

Finally, let Ψ : R → R be a strictly increasing homeomorphism. Then for all υ ∈ W2,p(I) and for all
δ1, δ2 ∈ R there exists a unique ξυ ∈ R such that∫ b

a

1
Kυ(t)

Ψ−1 (ξυ +Fυ(t)) dt = δ2 − δ1, (2.4)

where
F : W2,p(I) → C(I; R), υ 7→ Fυ(t) =

∫ t

a
Fυ(s)ds, t ∈ I.

Furthermore, there exists c0 > 0, independent on υ, such that:

|ξυ| ≤ c0 for all υ ∈ W2,p(I). (2.5)

Proof. First, we observe that the operator F is well defined being Fυ continuous in I for
all υ ∈ W2,p(I) by (2.1). Moreover, F is continuous from W2,p(I) in C(I, R). Indeed, F is
continuous from W2,p(I) in L1(I) by assumption and

sup
t∈I

|Fu(t)−Fυ(t)| ≤ ∥Fu − Fυ∥L1(I) for all u, υ ∈ W2,p(I). (2.6)

Furthermore
sup
t∈I

|Fυ(t)| ≤ ∥Θ∥L1(I) for all υ ∈ W2,p(I). (2.7)

Now, we fix υ ∈ W2,p(I) and define

Fυ : R → R, ξ 7→ Fυ(ξ) =
∫ b

a

1
Kυ(t)

Ψ−1 (ξ +Fυ(t)) dt.
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Note that also Fυ is continuous in I. Indeed, Fυ is continuous on I as noted above, the function
Ψ−1 is continuous by assumption and so, by Lebesgue’s Dominated Convergence Theorem,
we can infer that Fυ ∈ C(R; R).

Moreover Fυ is strictly increasing in R since Kυ ≥ 0 and Ψ−1 is strictly increasing by
assumption. Finally

Ψ−1
(

ξ − ∥Θ∥L1(I)

) ∫ b

a

1
Kυ(t)

dt ≤ Fυ(ξ) ≤ Ψ−1
(

ξ + ∥Θ∥L1(I)

) ∫ b

a

1
Kυ(t)

dt

which implies that limξ→±∞ Fυ(ξ) = ±∞. Then, by Bolzano’s Theorem, there exists a unique
ξυ ∈ R such that Fυ(ξυ) = δ2 − δ1 for any choice of δ1, δ2 ∈ R.

In order to prove (2.5), note that, by the Mean Value Theorem, there exists tυ ∈ I such that

Fυ(ξυ) =
∫ b

a

1
Kυ(t)

Ψ−1 (ξυ +Fυ(t)) dt = δ2 − δ1 = Ψ−1 (ξυ +Fυ(tυ))
∫ b

a

1
Kυ(t)

dt

and so

ξυ +Fυ(tυ) = Ψ

(
(δ2 − δ1)

(∫ b

a

1
Kυ(t)

dt
)−1

)
. (2.8)

Now observe that, by (2.3)

(δ2 − δ1)

(∫ b

a

1
Kυ(t)

dt
)−1

≤ |δ2 − δ1|
(∫ b

a

1
k2(t)

dt
)−1

=: C. (2.9)

Hence, denoted by Ψ̂ = max[−C,C] |Ψ| and recalling that Ψ is strictly increasing, relations
(2.8)–(2.9) give

|ξυ| ≤ |ξυ +Fυ(tυ)|+ |Fυ(tυ)| =
∣∣∣∣∣Ψ
(
(δ2 − δ1)

(∫ b

a

1
Kυ(t)

dt
)−1

)∣∣∣∣∣+ |Fυ(tυ)|

≤ |Ψ(C)|+ |Fυ(tυ)| ≤ Ψ̂ + ∥Θ∥L1(I).

Choosing c0 = Ψ̂ + ∥Θ∥L1(I) the proof is complete.

Theorem 2.2. Let T > 0, p > 1 and the operators F, K and Ψ be as in in Lemma 2.1.
Then, for all υ0, ω1, ω2 ∈ R there exists a solution υ of the problem

(
Ψ ◦ Kυυ′′)′(t) = Fυ(t), a.a. t ∈ I,

υ(0) = υ0, υ′(0) = ω1, υ′(T) = ω2,
(PA)

that is a function υ ∈ W2,p(I) such that

• t 7→ (Ψ ◦ Kυυ′′)(t) ∈ W1,p(I);

•
(
Ψ ◦ Kυυ′′)′(t) = Fυ(t), a.a. t ∈ I;

• υ(0) = υ0, υ′(0) = ω1, υ′(T) = ω2.

Proof. The proof is an adaptation of [2, Theorem 2.2] and [11, Theorem 3.1]. First, we observe
that, since the operators F, K and Ψ satisfy all the assumptions of Lemma 2.1, for all υ ∈



6 F. Anceschi, G. Autuori and F. Papalini

W2,p(I) and all δ1, δ2 ∈ R, there exists a unique ξυ ∈ R such that (2.4) and (2.5) still hold when
δ1 = w1 and δ2 = w2. Set

W0 =
{

υ ∈ W2,p(I) : υ(0) = υ0
}

and define the operator G : W0 → W0, with υ 7→ Gυ, as follows

Gυ(t) = υ0 + ω1t +
∫ t

0

∫ s

0
gυ(τ)dτds,

where
gυ(t) =

1
Kυ(t)

Ψ−1 (ξυ +Fυ(t)) , t ∈ I.

It is easy to see that G is well defined and that the solutions to (PA) correspond to the fixed
points of G. Finally, following [2] and [11], it is possible to show that G is bounded, continuous
and compact, so that, by Schauder’s Fixed Point Theorem, we get the existence of a function
υ which is a fixed point of G in I, that is a solution to the problem (PA).

3 Functional setting and main result

Throughout the paper we assume the following structural assumptions on Φ, k and f .

(A1) Φ : R → R is a strictly increasing homeomorphism such that Φ(0) = 0 with

lim inf
s→0+

Φ(s)
sρ

> 0 for some ρ > 0.

(A2) k : R+
0 × R → R is a continuous function such that

• k(t, y) > 0 for a.a. (t, y) ∈ R+
0 × R;

• t 7→ 1/k(t, y) ∈ Lp
loc(R

+
0 ) for all y ∈ R, for some p > 1.

(A3) f : R+
0 × R3 → R is a Carathéodory function, that is

• t 7→ f (t, x, y, z) is measurable for all (x, y, z) ∈ R3;

• (x, y, z) 7→ f (t, x, y, z) is continuous for a.a. t ∈ R+
0 ,

which is also decreasing with respect to the second variable, that is

f (t, x1, y, z) ≥ f (t, x2, y, z) for a.a. t ∈ R+
0 ,

for every x1, x2, y, z ∈ R such that x1 ≤ x2.

Moreover, we shall refer to the equation in (P) as (ODE), that is

(Φ ◦ Ku)
′ (t) = f (t, u(t), u′(t), u′′(t)), for a.a. t ∈ R+

0 , (ODE)

where, for simplicity, we denote

Ku(t) = k(t, u′(t))u′′(t) with u ∈ W2,p
loc (R

+
0 ) and t ∈ R+

0 .
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Definition 3.1. A function u ∈ C1(R+
0 ; R) is said to be a (weak) solution of (P) if

• u ∈ W2,p
loc (R

+
0 ) and t 7→ (Φ ◦ Ku)(t) ∈ W1,1

loc (R
+
0 );

• (Φ ◦ Ku)′(t) = f (t, u(t), u′(t), u′′(t)) for a.a. t ∈ R+
0 ;

• u(0) = u0, u′(0) = ν1, u′(+∞) = ν2.

Remark 3.2. Since we allow the function k to vanish in a set having null measure, equation
(ODE) can become singular. In this context, we search for solutions no more belonging to
C2(R+

0 ), but to W2,p
loc (R

+
0 ) ∩ C1(R+

0 ). The choice of this solution space is fairly natural if we
consider that the map t 7→ 1/k(t, y) is assumed to be in Lp

loc(R
+
0 ) for all y ∈ R.

Remark 3.3. Since u ∈ W2,p
loc (R

+
0 ) is a solution of (P), and, in particular, the map

t 7→ (Φ ◦ Ku)(t) is in W1,1
loc (R

+
0 ), and Φ is a homeomorphism, then Ku can be considered

continuous in R+
0 (see [9, Remark 2.1]).

Definition 3.4. A function α∈C1(R+
0 ; R) is said to be a (weak) lower solution of (ODE) if

• α ∈ W2,p
loc (R

+
0 ) and t 7→ (Φ ◦ Kα)(t) ∈ W1,1

loc (R
+
0 );

• (Φ ◦ Kα)′(t) ≥ f (t, α(t), α′(t), α′′(t)) for a.a. t ∈ R+
0 .

Definition 3.5. A function β∈C1(R+
0 ; R) is said to be a (weak) upper solution of (ODE) if

• β ∈ W2,p
loc (R

+
0 ) and t 7→ (Φ ◦ Kβ)(t) ∈ W1,1

loc (R
+
0 );

• (Φ ◦ Kβ)
′(t) ≤ f (t, β(t), β′(t), β′′(t)) for a.a. t ∈ R+

0 .

Finally, we say that a pair (α, β) of lower and upper solutions of (ODE) is ordered if

α′(t) ≤ β′(t) for all t ∈ R+
0 .

Besides the structural assumptions (A1)–(A3) introduced before, we also consider some
further natural requirements, including a suitable form of the so-called Nagumo–Wintner
growth condition on f , see (3.2) below, which allows us to obtain a priori estimates on the
derivatives of the solutions of (P) on any compact interval of R+

0 .

From now on, let T0 > 0 be a fixed positive number and denote by J = [0, T0]. Finally,
assume the following conditions.

There exists an ordered pair (α, β) of lower and upper solutions to (ODE) such that α(0) =

β(0) = u0, α′(0) = ν1, β′ is increasing in (T0,+∞) and limt→+∞ β′(t) = ν2, satisfying the following
assumptions.

(H1) Denoting by

k∗(t) = min{k(t, y) : y ∈ [α′(t), β′(t)]}, k∗(t) = max{k(t, y) : y ∈ [α′(t), β′(t)]},

assume that 1/k∗ ∈ Lp
loc(R

+
0 ).

(H2) There exist a constant H > 0, a non-negative function ℓ ∈ L1(J), a non-negative function
µ ∈ Lq(J), for some 1 < q ≤ +∞, and a measurable function ψ : R+ → R+ satisfying

1
ψ

∈ L1
loc(R

+) and
∫ ∞ 1

ψ(t)
dt = +∞, (3.1)
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such that
| f (t, x, y, z)| ≤ ψ(|Φ(k(t, y)z)|)

(
ℓ(t) + µ(t)|z|

q−1
q

)
(3.2)

for a.a. t ∈ J and all x, y, z ∈ R such that x ∈ [α(t), β(t)], y ∈ [α′(t), β′(t)] and |z| ≥ H.

(H3) For any L > 0 there exist a non-negative function ηL ∈ L1(R+
0 ) and a continuous function

KL ∈ W1,1
loc (R

+
0 ), with KL null in [0, T0] and strictly increasing in [T0,+∞), satisfying∫ ∞

T0

1
k∗(t)

e−
KL(t)

ρ dt < +∞, (3.3)

such that

(i) | f (t, x, y, z)| ≥ K′
L(t)|Φ(k(t, y)z)| for a.a. t ∈ [T0,+∞), all x ∈ [α(t), β(t)], all

y ∈ [α′(t), β′(t)] and all z ∈ R with |z| ≤ NL(t)/k(t, y);

(ii) | f (t, x, y, z)| ≤ ηL(t) for a.a. t ∈ R+
0 , all x ∈ [α(t), β(t)], all y ∈ [α′(t), β′(t)] and all

z ∈ R with |z| ≤ γ̂L(t);

(iii) f (t, x, y, z) ≤ 0 for a.a. t ∈ [T0,+∞), all x ∈ [α(t), β(t)], all y ∈ [α′(t), β′(t)] and all
z ∈ R with |z| ≤ γ̂L(t);

where

γL(t) =
NL(t)
k∗(t)

and γ̂L(t) = γL(t) + |α′′(t)|+ |β′′(t)| a.a. t ∈ R+
0 ,

NL(t) = Φ−1
{

Φ(L)e−KL(t)
}

t ∈ R+
0 .

Remark 3.6. Note that, since 1/k∗ ∈ Lp
loc(R

+
0 ) by (H1), also 1/k∗ ∈ Lp

loc(R
+
0 ).

Moreover, by definition of k∗, we have

NL(t)
k(t, y)

≤ NL(t)
k∗(t)

= γL(t) ≤ γ̂L(t) for a.a. t ∈ R+
0 and all y ∈ [α′(t), β′(t)],

so that, on account of (H3)–(iii), we can rewrite (H3)–(i) as follows

f (t, x, y, z) ≤ −K′
L(t)|Φ(k(t, y)z)|

for a.a. t ∈ [T0,+∞), all x ∈ [α(t), β(t)], all y ∈ [α′(t), β′(t)] and all z ∈ R such that
|z| ≤ NL(t)/k(t, y).

Remark 3.7. Despite their technicality, assumptions (H1)–(H3) are fulfilled in several remark-
able cases, as it we be clear from the examples presented in Section 4.

In particular, the request (3.3) in (H3) is compatible with the critical nature of the problem
connected with the growth of f at infinity; see Section 4 and [11] for further details.

Remark 3.8. It is worth noting that NL is continuous so that γL = NL/k∗ ∈ Lp
loc(R

+
0 ), since

1/k∗ in Lp
loc(R

+
0 ) by (A2). Moreover, NL is strictly positive by definition, being Φ(L) > 0.

Furthermore, recalling the monotonicity of KL and the fact that Φ is a strictly increasing
homeomorphism, we infer that NL is strictly decreasing in [T0,+∞). In particular, gathering
the definition of NL and the monotonicity of Φ, we deduce that NL < L in (T0,+∞) and
NL(t) = L for all t ∈ J.
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Moreover, using the liminf condition in (A1) we deduce that

lim sup
ξ→0+

Φ−1(ξ)

ξ1/ρ
< +∞.

Consequently, combining the above considerations with (3.3) and the fact that 1/k∗ ∈ Lp
loc(R

+
0 ),

we obtain that γL = NL/k∗ ∈ L1(R+
0 ). Finally, since α, β ∈ W2,p

loc (R
+
0 ), we also have that

γ̂L = γL + |α′′|+ |β′′| ∈ L1
loc(R

+
0 ); see [9, Remark 3.7] and [11, Remark 1].

We are now ready to state our main result.

Theorem 3.9. Assume (A1)–(A3) and (H1)–(H3). Then, problem (P) admits at least a weak solution
u ∈ W2,p

loc (R
+
0 ) satisfying

α ≤ u ≤ β and α′ ≤ u′ ≤ β′ a.e. in R+
0 .

The proof of Theorem 3.9 is divided into two steps.

Step 1. Solvability on compact sets. Let n ∈ N be such that n > T0 and consider problem
(Pn). By solution to (Pn) we mean a function un ∈ W2,p(In) such that

• t 7→
(
Φ ◦ Kun

)
(t) ∈ W1,1(In);

•
(
Φ ◦ Kun

)′
(t) = f (t, un(t), u′

n(t), u′′
n(t)) for a.a. t ∈ In;

• un(0) = u0, u′
n(0) = α′(0), u′

n(n) = β(n).

Step 2. A limit argument. Once the existence on compact sets In is established, we construct
a new sequence of functions (xn)n by extending the functions un to R+

0 and we prove that the
limit function of (xn)n is a solution of (P).

3.1 Solvability on compact sets

In order to prove the existence of solutions for (Pn) we first consider and intermediate truncated
problem. Following [8], see also [2], for any pair of functions ξ, ζ ∈ L1(In), satisfying the
relation ξ ≤ ζ a.e. in In, we define the truncation operator

T ξ,ζ : L1(In) → L1(In), η 7→ T ξ,ζ
η ,

T ξ,ζ
η (t) = max{ξ(t), min{η(t), ζ(t)}}, t ∈ In.

Observe that, by definition,

Tξ,ζ
η (t) ∈ [ξ(t), ζ(t)] for all η ∈ L1(In) and for all t ∈ In. (3.4)

Moreover, by [8, Lemma A.1] we know that

(T1) |T ξ,ζ
η1 (t)− T ξ,ζ

η2 (t)| ≤ |η1(t)− η2(t)| for all η1, η2 ∈ L1(In) and all t ∈ In;

(T2) if ξ, ζ ∈ W1,1(In), then T ξ,ζ(W1,1(In)) ⊆ W1,1(In);

(T3) if ξ, ζ ∈ W1,1(In), then T ξ,ζ is continuous from W1,1(In) into itself.
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Now, for all u ∈ W2,p(In) and for all t ∈ In we denote

Du′(t) = T −γ̂L,γ̂L(
T α′ ,β′

u′

)′(t),
where γ̂L derives from assumption (H3), and observe that this definition is well posed when-
ever u ∈ W2,p

loc (R
+
0 ) by (T2). Moreover, by property (3.4) it results that

|Du′(t)| ≤ γ̂L(t) for all t ∈ In. (3.5)

Finally, we set
W0 =

{
u ∈ W2,p(In) : u(0) = u0

}
and consider the operator

F : W0 → L1(In), u 7→ Fu,

defined as

Fu(t) = f
(

t, T α,β
u (t), T α′,β′

u′ (t),Du′(t)
)
+ arctan

(
u′(t)− T α′,β′

u′ (t)
)

, t ∈ In. (3.6)

Then, we are in a position to introduce the truncated problem{(
Φ ◦ KT

u u′′)′ (t) = Fu(t), a.a. t ∈ In,

u(0) = u0, u′(0) = α′(0), u′(n) = β′(n),
(PT n)

where
KT : W2,p(In) → C(In; R), u 7→ KT

u (t) = k
(

t, T α′,β′

u′ (t)
)

. (3.7)

We are going to prove that (PT n) admits at least a weak solution, that is a function un ∈ W0

such that

• t 7→
(
Φ ◦ KT

un
u′′

n
)
(t) ∈ W1,1(In);

•
(
Φ ◦ KT

un
u′′

n
)′
(t) = Fun(t) for a.a. t ∈ In;

• un(0) = u0, u′
n(0) = α′(0), u′

n(n) = β(n).

To this aim, in the next result we show that (PT n) can be framed into the functional
setting of Theorem 2.2 and therefore it admits at least one solution. This is an intermediate
step between the solvability of (Pn) and the solvability of (P).

Theorem 3.10. Existence for (PT n). Assume (A1)–(A3) and (H1)–(H3). Then, problem (PT n)

admits at least a weak solution.

Proof. We want to show that the operators F and KT defined in (3.6) and (3.7), respectively,
satisfy the assumptions of Theorem 2.2.

First note that, since α′(t) ≤ β′(t) for all t ∈ R+
0 and α(0) = β(0) = u0, we also have

α(t) ≤ β(t) for all t ∈ R+
0 . Now, by (3.4), for all t ∈ In and all u ∈ W0 we have

T α,β
u (t) ∈ [α(t), β(t)] and T α′,β′

u′ (t) ∈ [α′(t), β′(t)],
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so that, by assumption (H3)–(ii) and (3.5), we get

|Fu(t)| =
∣∣∣ f (t, Tα,β

u (t), T α′,β′

u′ (t),Du′(t)
)
+ arctan

(
u′(t)− T α′,β′

u′ (t)
)∣∣∣

≤
∣∣∣ f (t, T α,β

u (t), T α′,β′

u′ (t),Du′(t)
)∣∣∣+ π

2

≤ ηL(t) +
π

2
,

for all u ∈ W0 and all t ∈ In. Hence F satisfies assumption (2.1) of Lemma 2.1 with Θ =

ηL + π/2.
Now we shall prove that Fu is continuous from W0 ⊆ W2,p(In) into L1(In). To this aim,

let (ui)i ⊆ W0 be a sequence in W0 such that ui → u in W0. Fix a subsequence of (Fui)i, still
denoted by (Fui)i for simplicity. Since ui → u in W0 we also have

ui −→ u in W2,p(In), u′
i −→ u′ in W1,p(In), u

′′
i −→ u′′ in Lp(In),

so that, by property (T3), it follows that

T α,β
ui −→ T α,β

u and T α′,β′

u′
i

−→ T α′,β′

u′ in W1,1(In),

and in turn (
T α′,β′

u′
i

)′
−→

(
T α′,β′

u′

)′
in L1(In).

Hence, by Theorem 4.9 of [13], for a.a. t ∈ In we have

T α,β
ui (t) → T α,β

u (t) and
(
T α′,β′

u′
i

)′
(t) −→

(
T α′,β′

u′

)′
(t), (3.8)

possibly up to a further subsequence. Moreover, using (T1), for a.a. t ∈ In we find

|Du′
i
(t)−Du′(t)| =

∣∣∣∣∣∣T −γ̂L,γ̂L(
T α′ ,β′

u′i

)′(t)− T −γ̂L,γ̂L(
T α′ ,β′

u′

)′(t)
∣∣∣∣∣∣ ≤

∣∣∣T α′,β′

u′
i

(t)− T α′,β′

u′ (t)
∣∣∣ −→ 0,

that is
Du′

i
(t) −→ Du′(t) for a.a. t ∈ In. (3.9)

Combining (3.8)–(3.9), with the fact that f is a Carathéodory function, we get

Fui(t) = f
(

t, T α,β
ui (t), T α′,β′

u′
i

(t),Du′
i
(t)
)
+ arctan

(
u′

i(t)− Tα′,β′

u′
i

(t)
)

−→ f
(

t, T α,β
u (t), T α′,β′

u′ (t),Du′(t)
)
+ arctan

(
u′(t)− T α′,β′

u′ (t)
)

= Fu(t) for a.a. t ∈ In.

Therefore we get the continuity of F by the Lebesgue Dominated Convergence Theorem.
Now, putting

αn = min
t∈In

α(t), α′
n = min

t∈In
α′(t), βn = min

t∈In
β(t), β′

n = min
t∈In

β′(t),

it follows that for all t ∈ In

αn ≤ α(t) ≤ T α,β
u (t) ≤ β(t) ≤ βn and α′

n ≤ α′(t) ≤ T α′,β′

u′ (t) ≤ β′(t) ≤ β′
n.
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Since T is a continuous operator in C(In; R), the uniform continuity of k in In × [α′
n, β′

n]

implies that KT is continuous with respect to the uniform topology of C(In; R). Moreover, if
u ∈ W2,p(In), then for all t ∈ In

T α,β
u (t) ∈ [α(t), β(t)] ⊆ [αn, βn] and T α′,β′

u′ (t) ∈ [α′(t), β′(t)] ⊆ [α′
n, β′

n]

so that
0 < k∗(t) ≤ KT

u (t) = k
(

t, T α′,β′

u′ (t)
)
≤ k∗(t),

where the functions k∗ and k∗ have been introduced in (H1). Thus we have that KT satisfies
the assumptions of Lemma 2.1 with k1 = k∗ and k2 = k∗.

Finally, taking ω1 = α′(0), ω2 = β′(n), problem (PT n) becomes (PA). Therefore (PT n)
admits a solution by Theorem 2.2.

Now, in order to prove the existence of a solution for (Pn), we consider some useful pro-
perties characterizing every solution of (PT n) that will be proved in the next lemma. To this
aim, we define

M = max
t∈J

β′(t)− min
t∈J

α′(t). (3.10)

Note that the constant M is well defined, being α, β ∈ C1(R+
0 ; R). Moreover, since Φ is a

continuous and strictly increasing function with Φ(0) = 0, there exists N ∈ R+ such that

Φ(N) > 0, Φ(−N) < 0 and N > max
{

H,
M

2T0

}
∥k∗∥L∞(J), (3.11)

where H is the positive constant introduced in assumption (H2).
Finally, take L > N such that

min
{∫ Φ(L)

Φ(N)

1
ψ(t)

dt,
∫ −Φ−(L)

−Φ(−N)

1
ψ(t)

dt
}

> ∥ℓ∥L1(J) + ∥µ∥Lq(J) · M
q−1

q , (3.12)

which is possible by virtue of (3.1).

Lemma 3.11. Assume (A1)–(A3) and (H1)–(H3). Let un ∈ W2,p(In) be a solution of (PT n). Then
the following properties hold:

(i) α(t) ≤ un(t) ≤ β(t) and α′(t) ≤ u′
n(t) ≤ β′(t) for all t ∈ In;

(ii) min
t∈J

|Kun(t)| ≤ N;

(iii) |Kun(t)| < L for all t ∈ J;

(iv) Kun is decreasing in [T0, n];

(v) Kun ≥ 0 in [T0, n];

(vi) if there exists t1 ∈ [T0, n] such that Kun(t1) = 0, then Kun(t) = 0 for all t ∈ [t1, n];

(vii) |Kun(t)| ≤ NL(t) for all t ∈ In;

(viii) Du′
n
(t) = u′′

n(t) ≤ γL(t) ≤ γ̂L(t) for all t ∈ In.
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Proof. The proof is similar to other results already known for second order BVPs, so that we
present it here for the sake of clarity and completeness.

Let un ∈ W2,p(In) be a solution of (PT n).

Claim (i). First we show that

α′(t) ≤ u′
n(t) ≤ β′(t) for all t ∈ In. (3.13)

Let us start with the first inequality in (3.13). Assume by contradiction that there exists t ∈ In

such that u′
n(t) < α′(t) and let us define

z(t) = u′
n(t)− α′(t), t ∈ In.

Since un solves (PT n) we find that

z(0) = u′
n(0)− α′(0) = 0, z(n) = u′

n(n)− α′(n) = β′(n)− α′(n) ≥ 0 and z(t) < 0.

Thus, by the continuity of z and the compactness of In, there exists t̂ ∈ In such that

z(t̂) = min
t∈In

z(t) < 0.

Therefore we can find t1 ∈ [0, t̂) and t2 ∈ (t̂, n] such that

z(t1) = z(t2) = 0 and z(t) < 0 for all t ∈ (t1, t2). (3.14)

Thus, by the definition of the truncating operator T and the fact that u′
n(t) < α′(t) for all

t ∈ (t1, t2), it follows
T α′,β′

u′
n

(t) = α′(t) for all t ∈ (t1, t2), (3.15)

and consequently

Du′
n
(t) = T −γ̂L,γ̂L(

T α′ ,β′
u′n

)′(t) = T −γ̂L,γ̂L
α′′ (t) = α′′(t) for all t ∈ (t1, t2), (3.16)

the last equality in (3.16) being true since |α′′(t)| ≤ γ̂L(t) for all t ∈ (t1, t2) by the definition of
γ̂L. Now, recalling that un is a weak solution of (PT n) and α is a lower solution of (ODE), by
(3.6) and (3.14)–(3.16), we infer

(Φ ◦ KT
un
)′(t) = Fun(t) = f

(
t, T α,β

un (t), T α′,β′

u′
n

(t),Du′
n
(t)
)
+ arctan

(
u′

n(t)− T α′,β′

u′
n

(t)
)

= f
(

t, T α,β
un (t), α′(t), α′′(t)

)
+ arctan

(
u′

n(t)− α′(t)
)

< f (t, T α,β
un (t), α′(t), α′′(t)) ≤ f (t, α(t), α′(t), α′′(t)) ≤ (Φ ◦ Kα)

′(t),

for all t ∈ (t1, t2), that is

(Φ ◦ KT
un
)′(t) < (Φ ◦ Kα)

′(t) for all t ∈ (t1, t2). (3.17)

Now, we set

Z1 = {t ∈ (t1, t̂) : z′(t) < 0} and Z2 = {t ∈ (t1, t̂) : z′(t) > 0}.

Note that both Z1 and Z2 have positive Lebesgue measure so that, recalling that k is positive
a.e. in R+

0 × R, we can find t∗1 ∈ Z1 and t∗2 ∈ Z2 such that

k
(

t∗1 , T α′,β′

u′
n

(t∗1)
)
> 0 and z′(t∗1) < 0 (3.18)
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and
k
(

t∗2 , T α′,β′

u′
n

(t∗2)
)
> 0 and z′(t∗2) > 0. (3.19)

Integrating (3.17) in [t∗1 , t̂] we get∫ t̂

t∗1

(
Φ ◦ KT

un

)′
(t)dt ≤

∫ t̂

t∗1
(Φ ◦ Kα)

′ (t)dt

which is equivalent to

(Φ ◦ KT
un
)(t̂)− (Φ ◦ Kα)(t̂) ≤ (Φ ◦ KT

un
)(t∗1)− (Φ ◦ Kα)(t∗1). (3.20)

Now observe that
(Φ ◦ KT

un
)(t∗1)− (Φ ◦ Kα)(t∗1) < 0. (3.21)

Indeed,

(Φ ◦ KT
un
)(t∗1)− (Φ ◦ Kα)(t∗1) = Φ

(
k
(

t∗1 , T α′,β′

u′
n

(t∗1)
)

u′′
n(t

∗
1)
)
− Φ

(
k
(
t∗1 , α′(t∗1)

)
α′′(t∗1)

)
= Φ

(
k
(
t∗1 , α′(t∗1)

)
u′′

n(t
∗
1)
)
− Φ

(
k
(
t∗1 , α′(t∗1)

)
α′′(t∗1)

)
< 0,

since T α,β
un (t∗1) = α(t∗1), u′′

n(t∗1) < α′′(t∗1) by (3.18) and Φ is strictly increasing.
Thus, combining (3.20) and (3.21), we find

(Φ ◦ KT
un
)(t̂)− (Φ ◦ Kα)(t̂) < 0. (3.22)

Similarly, integrating (3.17) in [t̂, t∗2 ], we get

(Φ ◦ KT
un
)(t̂)− (Φ ◦ Kα)(t̂) ≥ (Φ ◦ KT

un
)(t∗2)− (Φ ◦ Kα)(t∗2).

Additionally,
(Φ ◦ KT

un
)(t∗2)− (Φ ◦ Kα)(t∗2) > 0,

since Tα,β
un (t∗2) = α(t∗2), u′′

n(t∗2) > α′′(t∗2) by (3.19) and Φ is strictly increasing. Therefore

(Φ ◦ KT
un
)(t̂)− (Φ ◦ Kα)(t̂) > 0. (3.23)

Now, (3.22) and (3.23) provide a contradiction. Therefore α′(t) ≤ u′
n(t) for a.a. t ∈ In.

By adapting the previous argument, one is also able to prove u′
n(t) ≤ β′(t) for a.a. t ∈ In

finally obtaining α′(t) ≤ u′
n(t) ≤ β′(t) for a.a. t ∈ In.

Eventually, we get the thesis just by integrating (3.13) and recalling that un(0) = α(0) =

β(0) by assumption.

Claim (ii). Suppose, by contradiction, that Kun(t) > N for a.a. t ∈ J. Note that

u′′
n(t) =

Kun(t)
k(t, u′

n(t))
>

N
k(t, u′

n(t))
> 0

for a.a. t ∈ J. Thus, applying (i) we find

NT0 =
∫ T0

0
Ndt <

∫ T0

0
Kun(t)dt =

∫ T0

0
k
(
t, u′

n(t)
)

u′′
n(t)dt

≤ ∥k∗∥L∞(J)

∫ T0

0
u′′

n(t)dt = ∥k∗∥L∞(J)
[
u′

n(T0)− u′
n(0)

]
≤ ∥k∗∥L∞(J)

[
β′(T0)− α′(0)

]
≤ M∥k∗∥L∞(J) < NT0,
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by the choice of N in (3.11), which is a contradiction.
Similarly, we would get a contradiction assuming that Kun(t) < −N for a.a. t ∈ J.

Claim (iii). Suppose, by contradiction, that there exists t ∈ J such that |Kun(t)| ≥ L. It follows
that either Kun(t) ≥ L or Kun(t) ≤ −L.

Let us assume that Kun(t) ≥ L. By (ii) we know that

min
t∈J

Kun(t) ≤ min
t∈J

|Kun(t)| ≤ N < L

and so there exists t̂ ∈ J such that Kun(t̂) = mint∈J Kun(t) ≤ N. By the continuity of Kun we
can find t1, t2 ∈ J, with t1 ≤ t2, such that Kun(t1) = N, Kun(t2) = L and

N < Kun(t) < L for all t ∈ (t1, t2). (3.24)

Consequently, recalling the definition of Kun and the fact that k > 0 a.e. in J, we find

N
k(t, u′

n(t))
< u′′

n(t) <
L

k(t, u′
n(t))

for all t ∈ (t1, t2).

Hence, taking into account Remark 3.8, for a.a. t ∈ (t1, t2)

0 < H <
N

∥k∗∥L∞(J)
≤ N

k(t, u′
n(t))

< u′′
n(t) <

L
k(t, u′

n(t))
≤ L

k∗(t)
=

NL(t)
k∗(t)

= γL(t) ≤ γ̂L(t),

which implies, in particular, that

Du′
n(t) = u′′

n(t) for a.a. t ∈ (t1, t2).

Therefore, recalling that un solves (PT n), using (H2) and the fact that Φ ◦Kun(t) > 0 by (3.24),
the monotonicity of Φ and the choice of N, for a.a. t ∈ (t1, t2) it results∣∣∣∣(Φ ◦ KT

un

)′
(t)
∣∣∣∣ = ∣∣∣∣(Φ

(
k
(

t, T α′,β′

u′
n

(t)
)

u′′
n(t)

))′
(t)
∣∣∣∣

=
∣∣∣ f (t, T α,β

un (t), T α′,β′

u′
n

(t),Du′
n
(t)
)
+ arctan

(
u′

n(t)− T α′,β′

u′
n

(t)
)∣∣∣

=
∣∣ f (t, un(t), u′

n(t), u′′
n(t)

)∣∣
≤ ψ(|Φ ◦ Kun(t)|)

(
ℓ(t) + µ(t)|u′′

n(t)|
q−1

q

)
= ψ(Φ ◦ Kun(t))

(
ℓ(t) + µ(t)|u′′

n(t)|
q−1

q

)
.

Hence, by Hölder’s inequality, we get∫ Φ(L)

Φ(N)

1
ψ(τ)

dτ =
∫ Φ(Kun (t2))

Φ(Kun (t1))

1
ψ(τ)

dτ =
∫ t2

t1

(Φ ◦ Kun)
′ (t)

ψ(Φ ◦ Kun(t))
dt

≤
∫ t2

t1

[
ℓ(t) + µ(t)(u′′

n(t))
q−1

q

]
dt

≤ ∥ℓ∥L1(J) + ∥µ∥Lq(J)

(∫ t2

t1

u′′
n(t)dt

) q−1
q

≤ ∥ℓ∥L1(J) + ∥µ∥Lq(J)
[
β′(t2)− α′(t1)

] q−1
q

≤ ∥ℓ∥L1(J) + ∥µ∥Lq(J)M
q−1

q .
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This relation contradicts the choice of L in (3.12). Similarly, if we suppose Kun(t) ≤ −L we
reach a contradiction again.

Claim (iv). Since un is a solution to (PT n), using (i), we find that

(Φ ◦ Kun)
′ (t) = f

(
t, un(t), u′

n(t),Du′
n
(t)
)

for a.a. t ∈ In.

On the other hand, by (i) and (H3)–(iii), we get

f
(
t, un(t), u′

n(t),Du′
n
(t)
)
≤ 0 for a.a. t ∈ [T0, n],

being |Du′
n
(t)| ≤ γ̂L(t) by (3.5). Hence

(Φ ◦ Kun)
′ (t) ≤ 0 for a.a. t ∈ [T0, n]

and the claim follows since Φ is a strictly increasing homeomorphism.

Claim (v). By contradiction, suppose that there exists t1 ∈ [T0, n] such that Kun(t1) < 0. Then,
from (iv) we have that

Kun(t) ≤ Kun(t1) < 0 for all t ∈ [t1, n].

Hence, considering the definition of Kun we deduce

u′′
n(t) =

Kun(t)
k(t, u′

n(t))
< 0 for a.a. t ∈ [t1, n].

Now, we recall that un solves (PT n), and so, using (i) and assumption (H1), we get

β′(n) = u′
n(n) = u′

n(t1) +
∫ n

t1

u′′
n(τ)dτ < u′

n(t1) ≤ β′(t1) ≤ β′(n),

since β′ is increasing in (T0,+∞), which is a contradiction.

Claim (vi). The statement directly follows from (iv) and (v).

Claim (vii). Recalling that NL = L in J, by virtue of (iii) and (v), it is sufficient to prove that

0 ≤ Kun(t) ≤ NL(t) ∀t ∈ In \ J.

Put
t∗ = sup {t ≥ T0 : Kun(s) < NL(s) ∀ s ∈ [T0, t)} .

Note that t∗ is well defined, since Kun(T0) < L = NL(T0), and t∗ > T0.
We want to prove that t∗ > n. Proceed by contradiction and suppose that t∗ ≤ n. This

implies that
Kun(t) > 0 for all t ∈ [T0, t∗].

Indeed, if there exists t̄ ∈ [T0, t∗] such that Kun(t̄) = 0, we would get Kun(t) = 0 < NL(t) for
all t ∈ [t̄, n] by (vi). On the other hand, by definition of t∗, it results Kun(t) < NL(t) for all
t ∈ [T0, t∗). Consequently, since t̄ ≤ t∗, we would find Kun(t) < NL(t) for all t ∈ [T0, n] and
this relation contradicts the maximality of t∗. Hence

0 < Kun(t) = k(t, u′
n(t))u

′′
n(t) < NL(t) for a.a. t ∈ [T0, t∗),

and so

0 < u′′
n(t) <

NL(t)
k(t, u′

n(t))
≤ NL(t)

k∗(t)
= γL(t) ≤ γ̂L(t) for a.a. t ∈ [T0, t∗).
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Now, recalling that u′′
n is a solution to (PT n), assumptions (H3)–(i) and (H3)–(iii) give

(Φ ◦ Kun)
′ (t) = f

(
t, un(t), u′

n(t), u′′
n(t)

)
≤ −K′

L(t)Φ ◦ Kun(t) for a.a. t ∈ [T0, t∗).

Recalling that Kun > 0 a.e. in [T0, t∗) and that Φ is strictly increasing with Φ(0) = 0, we infer

(Φ ◦ Kun)
′ (t)

Φ ◦ Kun(t)
≤ −K′

L(t) for a.a. t ∈ [T0, t∗).

Integrating both sides of the previous estimate in [T0, t∗), we get

log(Φ ◦ Kun)(t
∗)− log(Φ ◦ Kun)(T0) ≤ −KL(t∗),

since KL(T0) = 0. Now, by (iii) we know that Kun(T0) < L; therefore,

log
Φ ◦ Kun(t∗)

Φ(L)
< −KL(t∗),

being Φ strictly increasing, and in turn

Kun(t
∗) < Φ−1

(
Φ(L)e−KL(t∗)

)
= NL(t∗).

This contradicts the maximality of t∗. Hence we conclude that t∗ > n. This fact assures that
0 ≤ Kun(t) < NL(t) for all t ∈ [T0, n].

Claim (viii). Using (i) and (vii) we find

|u′′
n(t)| =

|k(t, u′
n(t))u′′

n(t)|
k(t, u′

n(t))
=

|Kun(t)|
k(t, u′

n(t))
≤ NL(t)

k∗(t)
= γL(t) ≤ γ̂L(t) for a.a. t ∈ In,

so that, by the definition of D, we get the claim.

Theorem 3.12. Assume (A1)–(A3) and (H1)–(H3). Then, if un ∈ W2,p(In) is a solution of the
truncated problem (PT n), then it is also a solution to (Pn).

Proof. Let un ∈ W2,p
loc (R

+
0 ) be a solution of (PT n). Then, by Lemma 3.11–(i) and (viii), we find

that for a.a. t ∈ In

(Φ ◦ Kun)
′ (t) =

(
Φ
(
k(t, u′

n(t))u
′′
n(t)

))′
(t) =

(
Φ
(

k
(

t, T α′,β′

u′
n

)
u′′

n(t)
))′

(t)

=
(

Φ ◦ KT
un

)′
(t) = Fun(t)

= f
(

t, T α,β
un (t), T α′,β′

u′
n

(t),Du′
n
(t)
)
+ arctan

(
u′

n(t)− T α′,β′

u′
n

(t)
)

= f (t, un(t), u′
n(t), u′′

n(t)),

that is un solves the equation in (Pn). Moreover un(0) = u0, u′
n(0) = α′(0) and u′

n(n) = β′(n).
Hence un is a weak solution to (Pn).
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3.2 A limit argument

In order to complete the proof of Theorem 3.9 we consider a sequence (un)n of solutions to
(PT n). By Theorem 3.12, every un is also a solution to (Pn). We shall find a solution to (P)
via a limit argument.

To this aim, for any n > T0 define

xn : R+
0 → R, xn(t) =

{
un(t), t ∈ In,

un(n) + β′(n)(t − n), t > n,

so that

x′n(t) =

{
u′

n(t), t ∈ In,

β′(n), t > n.

Moreover, for all t ∈ R+
0 put

zn(t) = x′′n(t) =

{
u′′

n(t), t ∈ In,

0, t > n;
Φn(t) =

{
(Φ ◦ Kun)

′ (t), t ∈ In,

0, t > n.

By Lemma 3.11–(viii) we have

|zn(t)| = |x′′n(t)| =
{
|u′′

n(t)|, a.a. t ∈ In,

0, t > n,
≤ γL(t) for a.a. t ∈ R+

0 . (3.25)

Now, since un is a solution to (Pn), by Lemma 3.11–(i) and (viii), together with (H3)–(ii), we
also find

|Φn(t)| =
{
| f (t, un(t), u′

n(t), u′′
n(t)) |, a.a. t ∈ In,

0, t > n,
≤ ηL(t) for a.a. t ∈ R+

0 . (3.26)

Moreover, since ηL ∈ L1(R+
0 ) by assumption and also γL ∈ L1(R+

0 ), see Remark 3.8, both
(zn)n and (Φn)n are equi-integrable in R+

0 so that, by the Dunford–Pettis Theorem, there exist
z, Φ̂ ∈ L1(R+

0 ) such that

zn ⇀ z and Φn ⇀ Φ̂ in L1(R+
0 ) as n → +∞, (3.27)

up to subsequences. Consequently, for all s ∈ R+
0∫ s

0
zn(τ)dτ −→

∫ s

0
z(τ)dτ and

∫ s

0
Φn(τ)dτ −→

∫ s

0
Φ̂(τ)dτ as n → +∞. (3.28)

On the other hand, by Lemma 3.11–(i) and (iii), the sequences (u′
n(0))n and (Kun(0))n are

bounded in R and so there exists K0 ∈ R such that

u′
n(0) = x′n(0) −→ α′(0) = ν1 and Kun(0) −→ K0 as n → +∞, (3.29)

up to subsequences. Now, let us define

x(t) = u0 + ν1t +
∫ t

0

∫ s

0
z(τ)dτds, t ∈ R+

0 .
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We want to show that x is a solution to (P). Clearly, x(0) = u0. Moreover, for all t ∈ R+
0

x′(t) = ν1 +
∫ t

0
z(s)ds, with x′(0) = α′(0) = ν1, and x′′(t) = z(t).

By (3.28)–(3.29) we have

x′n(t) = x′n(0) +
∫ t

0
zn(s)ds −→ x′(t) for all t ∈ R+

0 . (3.30)

Furthermore, for all s ∈ R+
0∣∣∣∣∫ s

0
zn(τ)dτ

∣∣∣∣ ≤ ∫ s

0
|zn(τ)|dτ ≤ ∥γL∥L1(R+

0 ),

so that, by (3.28) ∫ t

0

∫ s

0
zn(τ)dτds −→

∫ t

0

∫ s

0
z(τ)dτds for all t ∈ R+

0 ,

and in turn, using also (3.29), it results

xn(t) = u0 + u′
n(0)t +

∫ t

0

∫ s

0
zn(τ)dτds −→ x(t) for all t ∈ R+

0 . (3.31)

Moreover, recalling that u′
n(t) = x′n(t) and u′′

n(t) = x′′n(t) for a.a. t ∈ In, we find

Φ(k(t, x′n(t))x′′n(t)) = Φ ◦ Kun(t) = Φ ◦ Kun(0) +
∫ t

0
Φn(s)ds,

that is

x′′n(t) =
1

k(t, x′n(t))
Φ−1

(
Φ ◦ Kun(0) +

∫ t

0
Φn(s)ds

)
for a.a. t ∈ In.

Hence, recalling that k and Φ−1 are continuous, and using (3.28)–(3.30), we get

zn(t) = x′′n(t) −→
1

k(t, x′(t))
U (t) for a.a. t ∈ R+

0 , (3.32)

where

U (t) =

Φ−1
(

Φ(K0) +
∫ t

0
Φ̂(s)ds

)
, t ∈ In,

0, t > n.

Observe that U ∈ C(R+
0 ; R), Φ ◦ U ∈ AC(R+

0 ; R) and (Φ ◦ U )′ = Φ̂ ∈ L1(R+
0 ). Now, by (3.25)

and (3.32) we obtain

zn = x′′n −→ U (·)
k(·, x′)

in L1(R),

so that, by (3.27), we get

z(t) =
U (t)

k(t, x′(t))
for a.a. t ∈ R+

0 , (3.33)

which implies
x′′n(t) = zn(t) −→ z(t) = x′′(t) for a.a. t ∈ R+

0 . (3.34)
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Combining (3.30), (3.31) and (3.34) with the fact that f is Carathéodory, we infer

f (t, xn(t), x′n(t), x′′n(t)) −→ f (t, x(t), x′(t), x′′(t)) for a.a. t ∈ R+
0 . (3.35)

Now, fix t ∈ R+
0 ; clearly there exists n̄ > T0 such that t ∈ In for all n ≥ n̄. Hence, recalling

that for all n > T0 the function un solves (Pn), for any fixed t ∈ R+
0 we have

Φn(t) = (Φ ◦ Kun)
′ (t) = f (t, un(t), u′

n(t), u′′
n(t)) = f (t, xn(t), x′n(t), x′′n(t)) for all n ≥ n̄.

Consequently, from (3.35) we obtain

Φn(t) −→ f (t, x(t), x′(t), x′′(t)) for a.a. t ∈ R+
0 ,

and, by (3.26)
Φn −→ f (·, x, x′, x′′) in L1(R+

0 ).

Hence, by (3.33) we deduce that

(Φ ◦ Kx)
′ (t) = (Φ ◦ U )′ (t) = Φ̂(t) = f (t, x(t), x′(t), x′′(t)) for a.a. t ∈ R+

0 ,

that is x is a solution to (ODE).
Now, by Lemma 3.11–(i), we have

α(t) ≤ xn(t) ≤ β(t) and α′(t) ≤ x′n(t) ≤ β′(t) for a.a. t ∈ In and all n > T0,

so that, by (3.30)–(3.31)

α(t) ≤ x(t) ≤ β(t) and α′(t) ≤ x′(t) ≤ β′(t) for a.a. t ∈ R+
0 . (3.36)

Finally, by (3.25) and (3.34) we infer that x′′n −→ x′′ in L1(R+
0 ) and, recalling (3.29), we find

sup
t∈R+

0

|x′n(t)− x′(t)| ≤ |x′n(0)− ν1|+ ∥x′′n − x′′∥L1(R+
0 ) → 0,

so that x′n → x′ uniformly in R+
0 . In particular,

lim
t→+∞

x′(t) = lim
n→+∞

(
lim

t→+∞
x′n(t)

)
= lim

n→+∞
β′(n) = ν2.

Concerning the regularity of x, we first observe that x ∈ C1(R+
0 ; R), being xn ∈ C1(R+

0 ; R),
and so x ∈ Lp

loc(R
+
0 ). Moreover, U is locally bounded in R+

0 , since it is continuous, and
1/k(·, x′) ∈ Lp

loc(R
+
0 ) by virtue of (3.36), being 1/k∗ ∈ Lp

loc(R
+
0 ) by assumption. Therefore

x′′ = U/k(·, x′) ∈ Lp
loc(R

+
0 ). Furthermore also x′ ∈ Lp

loc(R
+
0 ), being

∫ b

a
|x′(t)|pdt ≤ 2p−1|b − a|

(
|ν1|p + ∥x′′∥L1([a,b])

)
< +∞ for all a, b ∈ R+

0 .

Hence x ∈ W2,p
loc (R

+
0 ).

Finally, Φ◦Kx = Φ◦U ∈ AC(R+
0 ; R) so that Φ◦Kx ∈ L1

loc(R
+
0 ) and (Φ◦Kx)′ = Φ̂ ∈ L1(R+

0 ).
Therefore Φ ◦ Kx ∈ W1,1

loc (R
+
0 ).

In conclusion, x ∈ W2,p
loc (R

+
0 ) is a solution to (P) and the proof is complete.
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4 Examples

In this section we present a class of examples of functions Φ, k and f satisfying conditions
(A1)–(A3) and (H1)–(H3).

Let u0, ν1, ν2 ∈ R be such that ν1 < ν2, and let’s consider the following BVP{(
Φ
(
k(t, u′(·))u′′(·)

))′
(t) = f1

(
t, u(t), u′(t)

)
f2(u′′(t)), a.a. t ∈ R+

0 ,

u(0) = u0, u′(0) = ν1, u′(+∞) = ν2,
(4.1)

where the functions Φ, k, f1 and f2 fulfill the assumptions listed below.

(I) Φ : R → R is an odd strictly increasing homeomorphism, with Φ(0) = 0, and there
exists ρ > 0 such that

lim inf
s→0+

Φ(s)
sρ

> 0. (4.2)

(II) k : R+
0 × R → R is continuous, strictly positive a.e. in R+

0 × R and bounded in
R+

0 × [ν1, ν2].

Moreover, if we denote by

k∗ = min
y∈[ν1,ν2]

k(t, y) and k∗ = max
y∈[ν1,ν2]

k(t, y),

we suppose that there exist p > 1 and σ > 0 such that

(II)1 t 7→ 1/k(t, y) ∈ Lp
loc(R

+
0 ) for all y ∈ R and 1/k∗ ∈ Lp

loc(R
+
0 );

(II)2

∫ ∞

1

1
tσkp

∗(t)
dt < +∞.

(III) f1 : R+
0 × R2 → R is a Carathéodory function, decreasing with respect to the x variable,

and there exists T0 > 0 for which the following properties hold:

(III)1 there exists f̃1 ∈ L∞
loc(R

+
0 ) such that

| f1(t, x, y)| ≤ f̃1(t)

for a.a. t ∈ [0, T0], all x ∈ [u0 + tν1, u0 + tν2] and all y ∈ [ν1, ν2];

(III)2 there exist c1, c2 > 0 and δ ≥ −1 such that

c1t−1 ≤ | f1(t, x, y)| ≤ c2tδ

for a.a. t ≥ T0, all x ∈ [u0 + tν1, u0 + tν2] and all y ∈ [ν1, ν2];

(III)3 f1(t, x, y) ≤ 0 for all t ≥ T0, all x ∈ [u0 + tν1, u0 + tν2] and all y ∈ [ν1, ν2].

(IV) f2 ∈ C(R; R) and it verifies:

(IV)1 f2(z) > 0 for z > 0 and f2(0) = 0;

(IV)2 there exist z∗ > 0, two real constants d1, d2 > 0 and a number γ ≤ 1 such that

d1|Φ(z)| ≤ f2(z) ≤ d2|Φ(z)|γ for all z ∈ R with |z| < z∗;
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(IV)3 there exist H > 0 and d3 > 0 such that if z ∈ R and |z| ≥ H then

f2(z) ≤ d3|z|
q−1

q for some 1 < q ≤ +∞;

(IV)4 f2 is homogeneous of degree d > 0 in R, with d ≤ p, that is

f2(tz) = td f2(z) for all t > 0 and z ∈ R.

Finally, put
KM = max

t∈R+
0

k∗(t) = sup{k(t, y) : (t, y) ∈ R+
0 × [ν1, ν2]}

and suppose that
c1d1

Kd
M

≥ σρ and γ
c1d1

Kd
M

≥ σ + δ. (4.3)

Remark 4.1. When δ = −1 in (III)2 we address the critical case.

Our aim is to prove that, in the present setting, all the hypotheses of Theorem 3.9 are
satisfied. As a consequence, there exists a solution u ∈ C1(R+

0 ; R) ∩ W2,p
loc (R

+
0 ) of (4.1).

Remark 4.2. Before proceeding, we highlight, for future reference, a few consequences of the
above assumptions (I)–(IV), that will also be employed in the sequel.

(A) For every ν ∈ (−∞, p] it results ∫ ∞

1

1
tσkν

∗(t)
dt < +∞.

Indeed, since k(t, y) ≥ k∗(t) for all for all (t, y) ∈ R+
0 × [ν1, ν2] and k is bounded in R+

0 × [ν1, ν2],
it follows that k∗ is bounded in R+

0 . Therefore, recalling that the map t 7→ t−σ/kp
∗(t) is

integrable in {t ≥ 1} by (II)2, for any ν ∈ (−∞, p] we have∫ ∞

1

1
tσkν

∗(t)
dt ≤ sup

R+
0

kp−ν
∗

∫ ∞

1

1
tσkp

∗(t)
dt < +∞.

(B) For all ζ > 0 it is max|z|≤ζ |Φ(z)| = Φ(ζ). Indeed, if z ∈ R is such that |z| ≤ ζ, since Φ is
odd and strictly increasing, we get −Φ(ζ) = Φ(−ζ) ≤ Φ(z) ≤ Φ(ζ).

(C) Combining (III)2 with (III)3 we have that

f1(t, x, y) ≤ −c1t−1 < 0

for a.a. t ≥ T0, all x ∈ [u0 + tν1, u0 + tν2], all y ∈ [ν1, ν2].

Obviously assumptions (A1)–(A3) are verified by virtue of (I)–(IV), with

f : R+
0 × R3 → R, f (t, x, y, z) = f1(t, x, y) f2(z).

Now, we are going to prove that also assumptions (H1)–(H3) are verified. To this aim, let
T0 be the positive number introduced in (III), and define

α(t) = u0 + tν1 and β(t) = u0 + tν2, t ∈ R+
0 .
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Clearly α, β ∈ C∞(R+
0 ; R) ⊂ W2,p

loc (R
+
0 ), with p > 1 introduced in (II), and they are, respec-

tively, a lower and a upper solution to (ODE), since f2(0) = 0 by (IV)1 and Φ(0) = 0 by (I).
Finally, α(0) = β(0) = u0 and α′(t) = ν1 < ν2 = β′(t) for all t ∈ R+

0 , so that the pair (α, β) is
ordered in R+

0 .

Hypothesis (H1). Obviously β′ is increasing in (T0,+∞), being β′′(t) = 0 for all t ∈ R+
0 , and

limt→+∞ β′(t) = ν2.

Hypothesis (H2). Let H > 0, d3 > 0 and q ∈ (1,+∞] be as in (IV)3. Combining (IV)1 with
(III)1 and (IV)3, we obtain

| f (t, x, y, z)| = | f1(t, x, y)| f2(z) ≤ d3 f̃1(t)|z|
q−1

q

for a.a. t ∈ [0, T0], all x ∈ [α(t), β(t)], all y ∈ [ν1, ν2] and all z ∈ R with |z| ≥ H. Hence
assumption (H2) is verified with

ψ ≡ 1, ℓ ≡ 0, µ(t) = d3 f̃1(t).

Observe that µ = d3 f̃1 ∈ Lq([0, T0]), being f̃1 ∈ L∞
loc(R

+
0 ) by (III)1.

Hypothesis (H3). Define the map K0 : R+
0 → R as follows

K0(t) =

0, 0 ≤ t ≤ T0,∫ t

T0

f0(s)ds, t > T0,

where
f0(s) = min {| f1(s, x, y)| : (x, y) ∈ [α(t), β(t)]× [ν1, ν2]} .

Observe that

• f0 is well defined in R+
0 since f1 is Carathéodory by assumption (III);

• f0 ∈ L1
loc(R

+
0 ), being f̃1 ∈ L∞

loc(R
+
0 ) by (III)1 and

f0(t) ≤ | f1(t, x, y)| ≤ f̃1(t) for all t ∈ R+
0 , all x ∈ [α(t), β(t)] and all y ∈ [ν1, ν2].

Hence K0 ∈ AC(R+
0 ; R) ∩ W1,1

loc (R
+
0 ). Furthermore, K0 is strictly increasing in [T0,+∞), and

K0(t) ≥ c1

∫ t

T0

ds
s

= c1 log
t

T0
for all t ≥ T0, (4.4)

by (III)2 and (III)3; see also Remark 4.2–(C).
Now, let L > 0 be fixed arbitrarily and put

m(L) = min
z∗≤|z|≤L

f2(z), M(L) = max
z∗≤|z|≤L

|Φ(z)|, c(L) = min

{
d1

Kd
M

,
m(L)

M(L)Kd
M

}
> 0.

Define the function KL : R+
0 → R as follows

HL(t) = Φ−1
(

Φ(L)e−c(L)K0(t)
)

.

By (4.4) it follows that K0(t) → +∞ as t → +∞, so that HL(t) → 0 as t → +∞. Therefore it is
possible to find tL > T0 such that

HL(t) ≤ z∗ for all t ≥ tL. (4.5)



24 F. Anceschi, G. Autuori and F. Papalini

We then claim that the function KL(t) : R+
0 → R defined by

KL(t) =


c(L)K0(t), 0 ≤ t ≤ tL,

c(L)K0(tL) +
d1

Kd
M

∫ t

tL

f0(s)ds, t > tL,

satisfies all the properties in assumption (H3). Observe that

• KL is continuous in R+
0 , being K0 continuous in R+

0 ;

• KL ≡ K0 ≡ 0 in [0, T0] and KL is strictly increasing in [T0,+∞) since the same holds for
K0 and tL > T0; see Remark 4.2–(C).

Moreover, KL ∈ W1,1
loc (R

+
0 ), since the same is true for K0, and for a.a. t ∈ R+

0 , all x ∈ [α(t), β(t)]
and all y ∈ [ν1, ν2], it is

K′
L(t) =


0, 0 ≤ t ≤ T0

c(L) f0(t), T0 < t ≤ tL
d1

Kd
M

f0(t), t > tL

≤


0, 0 ≤ t ≤ T0,

c(L)| f1(t, x, y)|, T0 < t ≤ tL,
d1

Kd
M
| f1(t, x, y)|, t > tL.

(4.6)

Now, we observe that KL(t) ≥ c(L)K0(t) for all t ∈ R+
0 so that

NL(t) = Φ−1
(

Φ(L)e−KL(t)
)
≤ HL(t) for all t ∈ R+

0 ,

and in turn, by (4.5), it follows that

NL(t) ≤ z∗ for all t ≥ tL. (4.7)

Consequently, using (IV)4 and (IV)2, by (4.6), we obtain

| f (t, x, y, z)| = | f1(t, x, y)|
kd(t, y)

f2(k(t, y)z) ≥ d1

kd(t, y)
| f1(t, x, y)| · |Φ(k(t, y)z)|

≥ d1

Kd
M
| f1(t, x, y)| · |Φ(k(t, y)z)| ≥ K′

L(t)|Φ(k(t, y)z)|,

for a.a. t > tL, x ∈ [α(t), β(t)], y ∈ [ν1, ν2] and z ∈ R such that |k(t, y)z| ≤ NL(t).

(4.8)

On the other hand, by definition of NL it is NL(t) ≤ L for all t ∈ R+
0 . Therefore, using again

(IV)4 and (IV)2 and (4.6), it results

| f (t, x, y, z)| = | f1(t, x, y)|
kd(t, y)

f2(k(t, y)z) ≥ 1
Kd

M
| f1(t, x, y)| f2(k(t, y)z)

≥


d1

Kd
M
| f1(t, x, y)| · |Φ(k(t, y)z)|, |k(t, y)z| ≤ z∗,

mL

MLKd
M
| f1(t, x, y)| · |Φ(k(t, y)z)|, z∗ ≤ |k(t, y)z| ≤ NL(t),

≥ c(L)| f1(t, x, y)| · |Φ(k(t, y)z)|
≥ K′

L(t)|Φ(k(t, y)z)|,

(4.9)

a.a. t ∈ [T0, tL], x ∈ [α(t), β(t)], y ∈ [ν1, ν2] and z ∈ R such that |k(t, y)z| ≤ NL(t).
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Combining (4.8) with (4.9), it follows that

| f (t, x, y, z)| ≥ K′
L(t)|Φ(k(t, y)z)|

for a.a. t ≥ T0, all x ∈ [α(t), β(t)], all y ∈ [ν1, ν2] and all z ∈ R such that |z| ≤ NL(t)/k(t, y),
that is condition (H3)–(i) is satisfied.

Now we are going to prove the validity of (3.3). To this aim, observe that, since KL is
continuous in R+

0 and 1/k∗ ∈ Lp
loc(R

+
0 ) by (II), it results

∫ tL

T0

1
k∗(t)

e−
KL(t)

ρ dt < +∞. (4.10)

On the other hand, using the definition of KL and (III)2, we get

∫ ∞

tL

1
k∗(t)

e−
KL(t)

ρ dt = e−
c(L)K0(tL)

ρ

∫ ∞

tL

1
k∗(t)

e
− d1

ρKd
M

∫ t
tL

f0(s)ds
dt

≤ e−
c(L)K0(tL)

ρ

∫ ∞

tL

1
k∗(t)

(
tL

t

) c1d1
ρKd

M dt

= t
c1d1
ρKd

M
L e−

c(L)K0(tL)
ρ

∫ ∞

tL

1
k∗(t)

(
1
t

) c1d1
ρKd

M dt.

(4.11)

Now, recalling that the map t 7→ t−σ/k∗(t) is integrable in {t ≥ 1}, see Remark 4.2–(A), it

follows that also the map t 7→ t
− c1d1

ρKd
M /k∗(t) is integrable in {t ≥ 1}, since

∫ ∞

tL

1
k∗(t)

(
1
t

) c1d1
ρKd

M dt ≤
∫ ∞

tL

1
k∗(t)

(
1
t

)σ

dt < +∞,

being σ ≤ c1d1/ρKd
M by (4.3), which implies

∫ ∞

tL

1
k∗(t)

(
1
t

) c1d1
ρKd

M dt < +∞. (4.12)

Combining (4.11) with (4.12) we get (3.3).
Now, we want to prove the existence of a non-negative function ηL ∈ L1(R+

0 ) satisfying
(H3)–(ii) (note that γL = γ̂L in R+

0 , being α′′ ≡ β′′ ≡ 0 in R+
0 ). By (4.7), using also (IV)4, (III)2

and (IV)2, see also Remark 4.2–(C), for a.a. t ∈ R+
0 , all x ∈ [α(t), β(t)], all y ∈ [ν1, ν2] and all

z ∈ R such that |k∗(t)z| ≤ NL(t) we find

| f (t, x, y, z)| = | f1(t, x, y)|
kd
∗(t)

f2(k∗(t)z)

≤


c2d2

tδ

kd
∗(t)

|Φ(k∗(t)z)|γ ≤ c2d2
tδ

kd
∗(t)

[Φ(NL(t))]
γ , t > tL,

max
[0,L]

f2 ·
f̃1(t)
kd
∗(t)

, 0 ≤ t ≤ tL,

=: ηL(t).
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Finally, we claim that ηL ∈ L1(R+
0 ). First observe that, since d ≤ p, f̃1 ∈ L∞

loc(R
+
0 ) and

1/k∗ ∈ Lp
loc(R

+
0 ), we get∫ tl

0
ηL(t)dt ≤ max

[0,L]
f2 · ∥ f̃1∥L∞([0,tL])

∫ tL

0

1
kd
∗(t)

dt

≤ max
[0,L]

f2 · ∥ f̃1∥L∞([0,tL]) sup
R+

0

kp−d
∗

∫ tL

0

1
kp
∗(t)

dt

< +∞.

(4.13)

On the other hand, by (III)2, from the definition of ηL, it is∫ ∞

tL

ηL(t)dt = c2d2

∫ ∞

tL

tδ

kd
∗(t)

[Φ(NL(t))]
γ dt

= c2d2Φ(L)γ
∫ ∞

tL

tδ

kd
∗(t)

e−γKL(t)dt

= c2d2Φ(L)γe−γc(L)K0(tL)
∫ ∞

tL

tδ

kd
∗(t)

e
−γ

d1
Kd

M

∫ t
tL

f0(s)ds
dt

≤ c3

∫ ∞

tL

1
kd
∗(t)

(
1
t

)γ
c1d1
Kd

M
−δ

dt,

(4.14)

with c3 > 0 appropriate constant.
Now, observe that, if tL ≥ 1, recalling that γ c1d1

Kd
M
− δ ≥ σ by (4.3), we get

∫ ∞

tL

1
kd
∗(t)

(
1
t

)γ
c1d1
Kd

M
−δ

dt ≤
∫ ∞

1

1
kd
∗(t)

(
1
t

)γ
c1d1
Kd

M
−δ

dt ≤
∫ ∞

1

1
kd
∗(t)tσ

dt < +∞,

since d ≤ p by assumption, see Remark 4.2–(A); on the other hand, if tL < 1, then

∫ ∞

tL

1
kd
∗(t)

(
1
t

)γ
c1d1
Kd

M
−δ

dt =
∫ 1

tL

1
kd
∗(t)

(
1
t

)γ
c1d1
Kd

M
−δ

dt +
∫ ∞

1

1
kd
∗(t)

(
1
t

)γ
c1d1
Kd

M
−δ

dt

≤
∫ 1

tL

1
kd
∗(t)

(
1
t

)γ
c1d1
Kd

M
−δ

dt +
∫ ∞

1

1
kd
∗(t)tσ

dt

< +∞,

since the map t 7→ k−d
∗ (t)t

δ−γ
c1d1
Kd

M is bounded in [tL, 1] and, as before,
∫ ∞

1
1

kd
∗(t)tσ dt < +∞, being

d ≤ p. Therefore, from (4.14), we infer that∫ ∞

tL

ηL(t)dt < +∞. (4.15)

Combining (4.13) with (4.15) we get the claim.
Gathering together all these facts, we are entitled to apply Theorem 3.9 to the BVP (4.1),

getting at least a solution u ∈ C1(R+
0 ) ∩ W2,p

loc (R
+
0 ) such that

u0 + tν1 ≤ u(t) ≤ u0 + tν2 and ν1 ≤ u′(t) ≤ ν2 for a.a. t ∈ R+
0 .

Remark 4.3. It is worth noting that, in the particular case when the homeomorphism Φ in (I)
is also homogeneous of degree r ∈ (0, p], the growth assumption (IV)3 can be replaced with
the following one:
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(IV)′3 there exists H > 0 and d3 > 0 such that, if z ∈ R and |z| ≥ H, then

f2(z) ≤ d3|Φ(z)|α for some α ≤ 1. (4.16)

Indeed, if (4.16) holds, it follows

| f1(t, x, y)| f2(z) ≤ d3| f1(t, x, y)| · |Φ(z)|α = d3
| f1(t, x, y)|

k(t, y)rα
|Φ(k(t, y)z)|α

≤ d3
f̃1(t)

krα
∗ (t)

|Φ(k(t, y)z)|α,

for a.a. t ∈ [0, T0], all x ∈ [u0 + tν1, u0 + tν2], all y ∈ [ν1, ν2] and all z ∈ R such that |z| ≥ H.
As a consequence, hypothesis (H2) in Theorem 3.9 is fulfilled with

ψ(s) = sα, ℓ(t) = d3
f̃1(t)

kαr
∗ (t)

, µ(t) ≡ 0.

Note that, since α ≤ 1, the function ψ satisfies (H2)–(i); furthermore, since f̃1 ∈ L∞
loc(R

+
0 ), the

function 1/k∗ ∈ Lp
loc(R

+
0 ) and αr ≤ r ≤ p, we infer that ℓ ∈ L1([0, T0]).

We conclude this section by presenting some concrete examples of BVPs of the form (4.1),
satisfying assumptions (I)–(IV) introduced above.

Example 4.4. Let us consider the following boundary value problem
(

Φ
(

e−u′(t)2
min

{√
t,

1
t2

}
u′(t)

))′
= f (t, u, u′(t), u′′(t)), a.a. t ∈ R+

0 ,

u(0) = 0, u′(0) = 0, u′(+∞) = 1,
(4.17)

with m > 1 to be fixed later, θ ∈ (0, 1) and

Φ(z) = z + sin z, f (t, x, y, z) = −m[arctan(x3 + y2) + π] · |z|θ t
1 + t2 .

Obviously, problem (4.17) takes the form (4.1) with

• Φ : R → R, Φ(z) = z + sin z;

• k : R+
0 × R → R, k(t, y) = e−y2

min{
√

t, 1/t2};

• f1 : R+
0 × R2 → R, f1(t, x, y) = −[arctan(x3 + y2) + π]

mt
1 + t2 ;

• f2 : R → R, f2(z) = |z|θ .

We claim that the functions Φ, k, f1 and f2 satisfy all the assumptions (I)–(IV) introduced in
this section, with suitable constants fulfilling (4.3).

Assumption (I) It is straightforward to recognize that Φ is an odd strictly increasing homeo-
morphism. Moreover, since

lim
z→0+

Φ(z)
z

= lim
z→0+

z + sin z
z

= 2,

condition (4.2) is satisfied with ρ = 1.
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Assumption (II) Clearly k is continuous, strictly positive a.e. in R+
0 × R and bounded in

R+
0 × [0, 1]. Moreover, it is very easy to see that the map t 7→ 1/k(t, y) ∈ Lp

loc(R
+
0 ) for all

y ∈ R, for every fixed p ∈ (1, 2), and the same is true for 1/k∗(t) = e/ min{
√

t, t2}. Moreover,∫ ∞

1

1
tσkp

∗(t)
dt = ep

∫ ∞

1

1
tσ−2p dt < +∞, for every σ > 2p + 1.

Assumption (III) f1 is a Carathéodory function in R+
0 × R2, being continuous in the same set,

and it is also decreasing with respect to x in R+
0 × R2.

Moreover, for all t ∈ R+
0 , all x ∈ [0, t] and all y ∈ [0, 1] it is

| f1(t, x, y)| =
[
arctan(x3 + y2) + π

] mt
1 + t2

≤
[
arctan(1 + t3) + π

] mt
1 + t2 =: f̃1(t) ∈ C(R+

0 ; R) ⊆ L∞
loc(R

+
0 )

and also

π

2
· mt2

1 + t2 =
(

π − π

2

) mt2

1 + t2 ≤ t| f1(t, x, y)| ≤ t f̃1(t) =
[
arctan(1 + t3) + π

] mt2

1 + t2 . (4.18)

Now, since

lim
t→+∞

π

2
· mt2

1 + t2 = m
π

2
and lim

t→+∞

[
arctan(1 + t3) + π

] mt2

1 + t2 =
3
2

mπ,

from (4.18) we deduce that for any ε ∈ (0, mπ/2) there exists T0 = T0(ε) > 0 such that(
m

π

2
− ε
) 1

t
≤ | f1(t, x, y)| ≤

(
3
2

mπ + ε

)
1
t

for all t ≥ T0, all x ∈ [0, t] and all y ∈ [0, 1] , so that (III)2 holds with

c1 = m
π

2
− ε, c2 =

3
2

mπ + ε, δ = −1. (4.19)

Note that c1 = m π
2 − ε > 0. Finally, condition (III)3 is trivially satisfied.

Assumption (IV) Clearly f2 is continuous in R, being θ > 0, and (IV)1 trivially holds. Moreover,

lim
z→0

f2(z)
|Φ(z)|θ = lim

z→0

|z|θ
|z + sin z|θ =

1
2θ

,

so that for any ε ∈ (0, 1/2θ) there exists z∗ = z∗(ε) > 0 such that(
1
2θ

− ε

)
|Φ(z)| ≤ f2(z) ≤

(
1
2θ

+ ε

)
|Φ(z)|θ for all z ∈ R : |z| < z∗.

Hence condition (IV)2 is satisfied with

d1 =
1
2θ

− ε, d2 =
1
2θ

+ ε, γ = θ. (4.20)

Furthermore, condition (IV)3 holds with any constant H > 0, any number d3 ≥ 1 and
q = 1/(1 − θ) > 1. Finally f2 is homogeneous of degree d = θ < 1 < p.
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Now, we claim that, for any fixed p ∈ (1, 2), it is possible to choose

m > 1 and 0 < ε <
1
2θ

< m
π

2

in such a way that (4.3) holds. To prove the claim, first note that

KM = sup
R+

0 ×[0,1]
e−y2

min{
√

t, 1/t2} = 1.

Now, since

lim
ε→0+

(m − ε) ·
(

1
2θ

− ε

)
=

m
2θ

,

we can choose m > 1 and ε ∈
(
0, 1/2θ

)
satisfying

(m − ε) ·
(

1
2θ

− ε

)
> max

{
1 + 2p,

2p
θ

}
. (4.21)

Consequently, by (4.19)–(4.20) and recalling that ρ = 1, one gets

c1d1

Kd
M

= (m − ε) ·
(

1
2θ

− ε

)
> 1 + 2p = (1 + 2p)ρ.

On the other hand, using again (4.19)–(4.20) and recalling that δ = −1, we see that

γ
c1d1

Kd
M

= θ(m − ε) ·
(

1
2θ

− ε

)
> 2p = (1 + 2p) + δ.

From this, since σ can be chosen arbitrarily close to 1 + 2p, we conclude that (4.3) is satisfied.
We are then entitled to apply Theorem 3.9 which ensures the existence of a solution

u ∈ C1(R+
0 ; R) ∩ W2,p

loc (R
+
0 ) of (4.17).

Remark 4.5. A further example which covers the critical case can be constructed following
Example 4.4, but choosing ν1 = 1 < ν2 and substituting the function f1 with the following one

f1(t, x, y) = m
[
e−(x+y) − 1

]
t sin

(
1

t2 + 1

)
.

Indeed, f1 ∈ C(R+
0 × R2), it is non positive whenever x + y ≥ 0 and decreasing with respect

to x in the whole of R+
0 × R2.

Furthermore, for all t ≥ 1, all x ∈ [t, tν2] and all y ∈ [1, ν2] we have

m
2

t sin
(

1
t2 + 1

)
≤ m

[
1 − e−(x+y)

]
t sin

(
1

t2 + 1

)
= | f1(t, x, y)| ≤ mt sin

(
1

t2 + 1

)
=: f̃1(t),

with f̃1 ∈ C(R+
0 ), which implies

m
2

t2 sin
(

1
t2 + 1

)
≤ t| f1(t, x, y)| ≤ mt2 sin

(
1

t2 + 1

)
.

Therefore, for any ε ∈ (0, m/2) there exists T0 = T0(ε) that can be chosen greater or equal
than 1, such that, for all t ≥ T0, all x ∈ [t, tν2] and all y ∈ [1, ν2], it is(m

2
− ε
) 1

t
≤ | f1(t, x, y)| ≤ (m − ε)

1
t

,
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so that condition (III) holds with

T0 = 1, c1 =
m
2
− ε, c2 = m − ε, δ = −1.

Finally, we conclude by choosing m > 1 and ε ∈
(
0, 1/2θ

)
satisfying(m

2
− ε
)
·
(

1
2θ

− ε

)
> max

{
1 + 2p,

2p
θ

}
in place of (4.21).

Example 4.6. Let p ∈ (1,+∞) be fixed and let r, θ ∈ R be such that

1 < r < p + 1 and 0 < θ < r − 1.

Let us consider the following boundary value problem
(

Φ
(
| sin t|1/p + | sin2 u′(t)|

2
u′′(t)

))′
= f (t, u(t), u′(t), u′′(t)), a.a. t ∈ R+

0 ,

u(0) = 0, u′(0) = 1, u′(+∞) = ν2,
(4.22)

with ν2 > 1, m > 1 to be fixed later and

Φ(z) = Φr(z) = |z|r−2z and f (t, x, y, z) = −m + t| cos t|
1 + t

(x + | cos y|)3 |z|θ .

Problem (4.22) takes the form (4.1) with

• Φ : R → R is the r-Laplacian;

• k : R+
0 × R → R, k(t, y) = | sin t|1/p+| sin2 y|

2 ;

• f1 : R+
0 × R2 → R, f1(t, x, y) = −m+t| cos t|

1+t (x + | cos y|)3;

• f2 : R → R, f2(z) = |z|θ .

We shall see that the functions Φ, k, f1 and f2 satisfy all the assumptions (I)–(IV) introduced
in this section, with suitable constants fulfilling (4.3).
Assumption (I) Clearly the r-Laplacian is an odd strictly increasing homeomorphism, for which
condition (4.2) is satisfied with ρ = r − 1, being limz→0+

Φ(z)
zr−1 = 1.

Assumption (II) The function k is continuous and bounded in R+
0 ×R, and it is strictly positive

a.e. in R+
0 × R.

Moreover, it is very easy to check that the map t 7→ 1/k(t, y) ∈ Lp
loc(R

+
0 ) for all y ∈ R, for

every fixed p ∈ (1, p), and the same is true for 1/k∗(t) = 2/| sin t|1/p, so that (II)1 holds.
Now, choose p > 1 in such a way that

p ∈ (max{1, r − 1}, p).

For any σ > 1 it results∫ ∞

2π

1
tσkp

∗(t)
dt = 2p

∫ ∞

2π

1
tσ| sin t|p/p dt = 2p

∞

∑
n=1

∫ 2(n+1)π

2nπ

1
tσ| sin t|p/p dt

= 2p
+∞

∑
n=1

∫ 2π

0

1
(t + 2nπ)σ| sin t|p/p dt ≤ 2p

+∞

∑
n=1

∫ 2π

0

1
(2nπ)σ| sin t|p/p dt

= 2p
+∞

∑
n=1

1
(2nπ)σ

∫ 2π

0

1
| sin t|p/p dt < +∞,
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and, consequently, assumption (II)2 is fulfilled.
Assumption (III) f1 is a Carathéodory function in R+

0 × R2, being continuous in the same set,
and it is also decreasing with respect to x in R+

0 × R2.
Now, take T0 = 1. For all t ≥ T0, all x ∈ [t, tν2] and all y ∈ R it results f1(t, x, y) ≤ 0 and

| f1(t, x, y)| = m + t| cos t|
1 + t

(x + | cos y|)3 ≤ 4
(m + t| cos t|)

1 + t
(x3 + | cos y|3)

≤ 4(m + t)(t3ν3
2 + 1)

1 + t
=: f̃1(t),

with f̃1 ∈ C(R+
0 ; R) ⊆ L∞

loc(R
+
0 ). Furthermore, for all t ≥ 1, all x ∈ [t, tν2] and all y ∈ R

| f1(t, x, y)| ≤ f̃1(t) ≤ 4(m + 1)(ν3
2 + 1)t3. (4.23)

On the other hand, for all t ≥ 1, all x ∈ [t, tν2] and all y ∈ R, it is also true that

| f1(t, x, y)| ≥ m + t| cos t|
1 + t

x3 ≥ m
1 + t

≥ m
2
· 1

t
. (4.24)

Hence, combining (4.23) with (4.24) we see that (III)2 holds with

T0 = 1, c1 =
m
2

, c2 = 2(m + 1)(1 + ν2
2), δ = 3. (4.25)

Assumption (IV) Clearly f2 > 0 in R+ and f2(0) = 0. Moreover, if z ∈ R and |z| < 1, then

|Φ(z)| = |z|r−1 < |z|θ = f2(z) = |z|γ(r−1) = |Φ(z)|γ,

provided that γ = θ/(r − 1) < 1. Therefore, condition (IV)2 is satisfied with z∗ = 1 and

d1 = d2 = 1. (4.26)

Now, observe that, since Φ is homogeneous of degree r − 1 < p and

f2(z) = |z|θ ≤ |z|r−1 = |Φ(z)| for all z ∈ R with |z| ≥ 1,

we find that assumption (IV)′3 in Remark 4.3 holds with

H = 1, d3 = 1 α = 1.

Finally, f2 is homogeneous of degree d = θ.
Now, in order to prove the validity of (4.3), take m > 1 satisfying

m > 2(r − 1)max
{

1,
4
θ

}
.

By definition

KM = sup
R+

0 ×[1,ν2]

| sin t|1/p + sin2 y
2

≤ 1,

so that, by (4.25)–(4.26), and recalling that ρ = r − 1, it is

c1d1

Kd
M

≥ c1d1 =
m
2

> r − 1 = ρ.

On the other hand, using again (4.25)–(4.26), we find

γ
c1d1

Kd
M

≥ γc1d1 =
θ

r − 1
· m

2
> 4 = 1 + δ.

Choosing σ arbitrarily close to 1 we obtain (4.3).
In conclusion, by Theorem 3.9 there exists a solution u ∈ C1(R+

0 ; R) ∩ W2,p
loc (R

+
0 ) of (4.22).
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