By means of fixed point index theory for multivalued maps, we provide an analogue of the classical Birkhoff–Kellogg Theorem in the context of discontinuous operators acting on affine wedges in Banach spaces. Our theory is fairly general and can be applied, for example, to eigenvalues and parameter problems for ordinary differential equations with discontinuities. We illustrate in detail this fact for a class of second-order boundary value problem with deviated arguments and discontinuous terms. In a specific example, we explicitly compute the terms that occur in our theory

A Birkhoff–Kellogg Type Theorem for Discontinuous Operators with Applications / Calamai, Alessandro; Infante, Gennaro; Rodríguez-López, Jorge. - In: MEDITERRANEAN JOURNAL OF MATHEMATICS. - ISSN 1660-5446. - ELETTRONICO. - 21:5(2024). [10.1007/s00009-024-02692-3]

A Birkhoff–Kellogg Type Theorem for Discontinuous Operators with Applications

Calamai, Alessandro;Infante, Gennaro
;
2024-01-01

Abstract

By means of fixed point index theory for multivalued maps, we provide an analogue of the classical Birkhoff–Kellogg Theorem in the context of discontinuous operators acting on affine wedges in Banach spaces. Our theory is fairly general and can be applied, for example, to eigenvalues and parameter problems for ordinary differential equations with discontinuities. We illustrate in detail this fact for a class of second-order boundary value problem with deviated arguments and discontinuous terms. In a specific example, we explicitly compute the terms that occur in our theory
2024
File in questo prodotto:
File Dimensione Formato  
s00009-024-02692-3.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 430.71 kB
Formato Adobe PDF
430.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/332453
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact