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Abstract. By means of fixed point index theory for multivalued maps,
we provide an analogue of the classical Birkhoff–Kellogg Theorem in the
context of discontinuous operators acting on affine wedges in Banach
spaces. Our theory is fairly general and can be applied, for example,
to eigenvalues and parameter problems for ordinary differential equa-
tions with discontinuities. We illustrate in detail this fact for a class
of second-order boundary value problem with deviated arguments and
discontinuous terms. In a specific example, we explicitly compute the
terms that occur in our theory.
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1. Introduction

The celebrated invariant-direction theorem due to Birkhoff and Kellogg [2]
is an abstract existence result that, roughly speaking, gives conditions for
the existence of a “nonlinear” eigenvalue and eigenvector for compact maps
in normed linear spaces. Among its various extensions, one is set in cones
and is due to Krasnosel’skĭi and Ladyženskĭı [20]. These classical functional
analytic tools find applications, e.g., to eigenvalue problems for ODEs and
PDEs (see for example the book [1], the recent papers [18,19], and references
therein); typically, the methodology in this context is to reformulate the given
boundary value problem as a fixed point problem in a suitable Banach space.

Recently, the first two authors developed a Birkhoff–Kellogg type theo-
rem in the framework of affine cones (cf. [4], see also [3,6,9]). The motivation
for this new type of results is that the setting of affine cones seems to be help-
ful when dealing with equations with delay effects. A key ingredient in [4] is
the continuity of the involved operator. On the other hand, there has been
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recently a rising attention towards discontinuous differential equations, that
occur when modelling real-world phenomena. Here, we mention the classical
books by Filippov [13], Carl and Heikkilä [7], and Heikkilä and Lakshmikan-
tham [17] and the more recent book by Figueroa et al. [12].

In the present paper, we provide a discontinuous version of the Birkhoff–
Kellogg type result in the setting of affine wedges in Banach spaces; see Theo-
rem 2.13. The proof of Theorem 2.13 is based on the fixed point index theory
for discontinuous operators developed in [12]. We stress that a crucial point
in the construction of the index for discontinuous operators is its equivalence
with the corresponding one of a suitable multivalued map, for which it is
already defined; see [14]. Note that this newly constructed topological tool
for discontinuous operators inherits the key properties of the classical one.
This construction is sketched in Sect. 2 for completeness.

In Sect. 3, we illustrate the applicability of our results to boundary value
problems; see Theorem 3.4. In more details, we consider the following second-
order parameter-dependent differential equation with deviated argument:

u′′(t) + λ f(t, u(t), u(σ(t))) = 0, t ∈ [0, 1], (1.1)

with initial condition

u(t) = ω(t), t ∈ [−r, 0], (1.2)

and the final homogeneous boundary condition

u(1) = 0, (1.3)

where λ ≥ 0 is a parameter, r ≥ 0, σ : [0, 1] → [−r, 1] and ω : [−r, 0] → [0,∞)
are suitable continuous functions, while the nonlinearity f : [0, 1] × [0,∞) ×
[0,∞) → [0,∞) may be discontinuous with respect to the second argument
in an appropriate sense. We employ a concept of admissible discontinuity
curve as in [12]. We conclude the paper by illustrating the applicability of
our theory by means of a toy model with delay; see Example 3.9.

As far as we know, our results extend and complement the previous
literature. This is highlighted in more details in Remarks 2.12, 2.15 and 3.10.

2. Birkhoff–Kellogg Type Results via Fixed Point Index
Theory

2.1. On Fixed Point Index Theory for Discontinuous Operators

Let K be a nonempty closed and convex subset of a real Banach space
(X, ‖ · ‖), U ⊂ K a relatively open subset and T : U ⊂ K −→ K a mapping,
not necessarily continuous.

Definition 2.1. The closed-convex envelope of an operator T : U ⊂ K −→ K
is the multivalued mapping T : U −→ 2X given by

Tx =
⋂

ε>0

co T
(
Bε(x) ∩ U

)
for every x ∈ U, (2.4)

where Bε(x) denotes the closed ball centered at x and radius ε, and co means
closed-convex hull.
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Example 2.2. 1. Consider the real function T : R → R defined as T (x) =
x, if x ≤ 0, and T (x) = x + 1, if x > 0. Its closed-convex envelope is
the multivalued map T given by T(x) = {x}, if x < 0; T(x) = {x + 1},
if x > 0; and T(0) = [0, 1].

2. The closed-convex envelope of any continuous map T is equal to T.

Now, we recall some useful properties of closed-convex envelopes (cc-
envelopes for short) and the definition of the fixed point index that we will
employ throughout this paper. The reader is referred to [11,12] for details.

Proposition 2.3. Let T be the cc-envelope of an operator T : U −→ K. Then,
the following properties hold:

1. If T̃ : U −→ 2X is an upper semicontinuous (usc) operator which
assumes closed and convex values and Tx ∈ T̃x for all x ∈ U, then
Tx ⊂ T̃x for all x ∈ U ;

2. If T maps bounded sets into relatively compact sets, then T assumes
compact values, and it is usc;

3. If T U is relatively compact, then TU is relatively compact.

The fixed point index for a not necessarily continuous operator T was
introduced in [10] using the degree theory developed in [11] and a retrac-
tion trick, just as in the classical case. Both topological degree and fixed
point index theories are based on the available results for the multivalued
cc-envelope T.

Definition 2.4. Let T : U ⊂ K −→ K be an operator, such that T U is
relatively compact, T has no fixed points on ∂ U and

{x} ∩ Tx ⊂ {Tx} for every x ∈ U ∩ TU, (2.5)

where T is the cc-envelope of T.
We define the fixed point index of T in K over U as

iK(T,U) = deg(I − T ◦ r, r−1(U), 0),

where r is a continuous retraction of X onto K and deg is the degree intro-
duced in [11].

Remark 2.5. Note that condition (2.5) means that the set of fixed points of
T (i.e., the set of points x, such that x ∈ Tx) is contained in the set of fixed
points of T. This is a weaker condition than the continuity of T ; indeed, if
T is continuous, then Tx = {Tx} for all x ∈ U , and thus, (2.5) is trivially
satisfied.

We now recall a useful proposition from [10] that relates the fixed point
index of the discontinuous operator T with that of its associated multivalued
mapping T.

Proposition 2.6 [10, Proposition 2.12] Let T be a mapping that satisfies the
conditions of Definition 2.4. Then, the fixed point index of T is such that

iK(T,U) = iK(T, U),

where the right-hand index is the fixed point index defined for multivalued
mappings; see [14].
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As a straightforward consequence of the fixed point index theory for usc
multivalued mappings, the following properties can be derived (see [12]).

Theorem 2.7. Let T be a mapping that satisfies the conditions of Defini-
tion 2.4. Then, the following properties hold:

(i) (Homotopy invariance) Let H : U × [0, 1] −→ K be a mapping, such
that

(a) for each (x, t) ∈ U×[0, 1] and all ε > 0, there exists δ = δ(ε, x, t) >
0, such that

s ∈ [0, 1], |t − s| < δ =⇒ ‖H(z, t) − H(z, s)‖ < ε ∀ z ∈ Bδ(x) ∩ U ;

(b) H
(
U × [0, 1]

)
is relatively compact;

(c) {x} ∩ Ht(x) ⊂ {Ht(x)} for all t ∈ [0, 1] and all x ∈ U ∩ HtU,
where Ht(·) := H(·, t) and Ht denotes the cc-envelope of Ht.

If x 
= H(x, t) for all (x, t) ∈ ∂ U × [0, 1], then the index iK (Ht, U) does
not depend on t ∈ [0, 1].

(ii) (Additivity) Let U be the disjoint union of two open sets U1 and U2. If
0 
∈ (I − T )

(
U\(U1 ∪ U2)

)
, then

iK (T,U) = iK (T,U1) + iK (T,U2) .

(iii) (Excision) Let A ⊂ U be a closed set. If 0 
∈ (I − T ) (∂ U)∪ (I − T ) (A),
then

iK (T,U) = iK (T,U\A) .

(iv) (Existence) If iK (T,U) 
= 0, then there exists x ∈ U , such that Tx = x.
(v) (Normalization) For every constant map T , such that T U ⊂ U, iK (T,U)

= 1.

2.2. Birkhoff–Kellogg Theorem and Discontinuous Operators

The following notions will be used along the text. A closed-convex subset K
of a Banach space (X, ‖·‖) is a wedge if μx ∈ K for every x ∈ K and for all
μ ≥ 0. Furthermore, if a wedge K satisfies that K ∩ (−K) = {0}, then it is
said to be a cone. A cone K induces the partial order in X given by u � v
if and only if v − u ∈ K. The cone K is called normal if there exists c > 0,
such that ‖u‖ ≤ c ‖v‖ for all u, v ∈ X with 0 � u � v.

Let K be a wedge of a Banach space (X, ‖·‖). For a given y ∈ X, the
translate of the wedge K is defined as follows:

Ky := y + K = {y + x : x ∈ K}.

Given an open-bounded subset D ⊂ X with 0 ∈ D, we will denote DKy
:=

(y + D) ∩ Ky, which is a relatively open subset of Ky. By DKy
and ∂ DKy

,
we will mean, respectively, the closure and the boundary of DKy

relative to
Ky.

For the convenience of the reader, we recall here the classical Birkhoff–
Kellogg Theorem [2] and a variant of it set in cones. The latter result is due
to Krasnosel’skĭi and Ladyženskĭı [20] (see also [16, Theorem 2.3.6]).
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Theorem 2.8 (Birkhoff–Kellogg) Let U be a bounded open neighborhood of
0 in an infinite-dimensional normed linear space X, and T : ∂ U −→ X a
compact map satisfying ‖Tx‖ ≥ α > 0 for all x ∈ ∂ U. Then, there exist
x0 ∈ ∂ U and λ0 > 0, such that x0 = λ0 Tx0.

Theorem 2.9 (Krasnosel’skĭi–Ladyženskĭı) Let X be a real Banach space,
U ⊂ X be an open-bounded set with 0 ∈ U, K ⊂ X be a cone, T : K∩U −→ K
be compact, and suppose that

inf
x∈K∩∂ U

‖Tx‖ > 0.

Then, there exist x0 ∈ K ∩ ∂ U and λ0 > 0, such that x0 = λ0 Tx0.

In the context of affine cones, a Birkhoff–Kellogg type result was re-
cently proved in [4, Theorem 2]. It reads as follows.

Theorem 2.10. Let (X, ‖·‖) be a real Banach space, K ⊂ X be a cone and
D ⊂ X be an open-bounded set with y ∈ DKy

. Assume that T : DKy
−→ K

is a compact map and consider the operator

T(y,λ) := y + λT, (λ ∈ R).

Assume that there exists λ̄ > 0, such that iKy
(T(y,λ̄),DKy

) = 0. Then, there
exist x∗ ∈ ∂ DKy

and λ∗ ∈ (0, λ̄), such that x∗ = y + λ∗ T (x∗).

Now, we present a discontinuous version of this Birkhoff–Kellogg type
result in affine wedges.

Theorem 2.11. Let D ⊂ X be an open-bounded set with 0 ∈ D, y ∈ X be
fixed and K be a wedge. Assume that T : DKy

−→ K is a mapping, such that
T DKy

is relatively compact and consider the operator

T(y,λ) := y + λT, (λ ∈ R).

Moreover, assume that there exists λ̄ > 0, such that iKy
(T(y,λ̄),DKy

) 
= 1 and
for each λ ∈ (0, λ̄]

{x} ∩ T(y,λ)(x) ⊂ {T(y,λ)(x)
}

for every x ∈ DKy
, (2.6)

where T(y,λ) denotes the cc-envelope of T(y,λ).

Then, there exist x∗ ∈ ∂ DKy
and λ∗ ∈ (0, λ̄), such that x∗ = y +

λ∗ T (x∗).

Proof. If T(y,λ) has a fixed point on ∂ DKy
for some λ ∈ (0, λ̄), we are done.

Otherwise, suppose that T(y,λ) is fixed point free on ∂ DKy
. Now, observe

that for each λ ∈ (0, λ̄], the operator T(y,λ) : DKy
−→ Ky satisfies condition

(2.6) and that T(y,λ)

(
DKy

)
is relatively compact, which implies that the fixed

point index iKy
(T(y,λ),DKy

) is well defined according to Definition 2.4.
Consider the map H : DKy

× [0, 1] → Ky defined as

H(x, t) = y + t λ̄ T (x).

Note that H satisfies conditions (a)–(c) in Theorem 2.7, i. Hence, if x 
=
H(x, t) for all (x, t) ∈ ∂ DKy

× [0, 1] , then

iKy
(T(y,λ̄),DKy

) = iKy
(H(·, 1),DKy

) = iKy
(H(·, 0),DKy

) = iKy
(y,DKy

).
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By the normalization property, since y ∈ DKy
, we have

iKy
(T(y,λ̄),DKy

) = iKy
(y,DKy

) = 1,

a contradiction. In conclusion, there exist t∗ ∈ (0, 1) and x∗ ∈ ∂ DKy
, such

that x∗ = y + t∗λ̄ T (x∗). �

Remark 2.12. Note that Theorem 2.11 has a twofold interest: not only is a
generalization of Theorem 2.10 to the context of discontinuous operators, but
also an improvement in the continuous case, since the conditions on the index
are weakened and the result is extended to the setting of wedges.

We now prove a result in the setting of normal cones which can be of
a more direct applicability due to the use of the norm, as in the classical
Birkhoff–Kellogg Theorem.

Theorem 2.13. Let K ⊂ X be a normal cone with normal constant c > 0 in
a Banach space X, D ⊂ X be an open-bounded set with 0 ∈ D, and y ∈ X
be fixed. Assume that T : DKy

−→ K is a mapping, such that T DKy
is

relatively compact and

inf{‖v‖ : v ∈ Tx, x ∈ ∂ DKy
} > 0.

If there exists a positive number

λ̄ >
c supx∈∂ D ‖x‖

inf{‖v‖ : v ∈ Tx, x ∈ ∂ DKy
} ,

such that the operator T(y,λ) satisfies condition (2.6) for each λ ∈ (0, λ̄], then
there exist x∗ ∈ ∂ DKy

and λ∗ ∈ (0, λ̄), such that x∗ = y + λ∗ T (x∗).

Proof. We shall show that iKy
(T(y,λ̄),DKy

) = 0, and so, the conclusion is
obtained as a consequence of Theorem 2.11.

Take x0 ∈ K\{0} and let us see that

x /∈ y + λ̄Tx + β x0 for all β ≥ 0 and x ∈ ∂ DKy
.

Indeed, suppose that there exist x1 ∈ ∂ DKy
, v ∈ Tx1 and β0 ≥ 0, such that

x1 = y + λ̄ v + β0 x0.

Then, λ̄ v � λ̄ v + β0 x0 = x1 − y and since K is normal

λ̄ ‖v‖ ≤ c ‖x1 − y‖ .

Observe that x1 − y ∈ ∂ D and so

λ̄ ‖v‖ ≤ c

(
sup

x∈∂ D
‖x‖
)

,

a contradiction with the choice of λ̄.
On the other hand, since DKy

and T
(
DKy

)
are bounded, there exists

β̄ > 0, such that

x /∈ y + λ̄Tx + β̄ x0 for all x ∈ DKy
.

Consider the multivalued homotopy H : DKy
× [0, 1] → 2Ky defined as

H(x, t) = y + λ̄Tx + t β̄ x0.
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By the homotopy invariance property of the index for usc multivalued maps
[14]

iKy
(T(y,λ̄),DKy

) = iKy
(H(·, 0),DKy

) = iKy
(H(·, 1),DKy

) = 0.

Therefore, it follows from Proposition 2.6 that iKy
(T(y,λ̄),DKy

) = iKy
(T(y,λ̄),

DKy
) = 0. �

The following corollary can be seen as an analogue of the classical result
of Krasnosel’skĭi and Ladyženskĭı.

Corollary 2.14. Let K ⊂ X be a normal cone in a Banach space X and
D ⊂ X be an open-bounded set with y ∈ DKy

. Assume that T : DKy
−→ K

is a mapping, such that T DKy
is relatively compact and, for each λ > 0, the

operator T(y,λ) satisfies condition (2.6). If

inf{‖v‖ : v ∈ Tx, x ∈ ∂ DKy
} > 0,

then there exist x∗ ∈ ∂ DKy
and λ∗ > 0, such that x∗ = y + λ∗ T (x∗).

Remark 2.15. Note that, in the non-affine case, Corollary 2.14 extends The-
orem 2.9 within the setting of discontinuous operators in normal cones. We
stress that, in the non-affine case, Corollary 2.14 can also be deduced as a con-
sequence of the multivalued generalization of the Birkhoff–Kellogg theorem
given in [15].

3. Applications

Consider the second-order parameter-dependent differential equation

u′′(t) + λ f(t, u(t), u(σ(t))) = 0, t ∈ [0, 1], (3.7)

with initial conditions of the form

u(t) = ω(t), t ∈ [−r, 0], (3.8)

and the final homogeneous boundary condition

u(1) = 0, (3.9)

where λ is a positive parameter, r ≥ 0, and σ : [0, 1] → [−r, 1] and ω :
[−r, 0] → [0,∞) are continuous functions. The nonlinearity f : [0, 1]×[0,∞)×
[0,∞) → [0,∞) may be discontinuous with respect to the second argument
in a sense which will be specified later.

To study the problem (3.7)–(3.9), we shall use a superposition principle
as in [5]. To do so, first consider the Dirichlet BVP

{
u′′(t) + y(t) = 0, t ∈ [0, 1],
u(0) = u(1) = 0,

whose unique solution is given by

u(t) =
∫ 1

0

G(t, s)y(s) ds,
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where G is the corresponding Green’s function. It is well known that

G(t, s) =
{

t(1 − s), if 0 ≤ t ≤ s ≤ 1,
(1 − t)s, if 0 ≤ s < t ≤ 1,

and moreover (see [21])

G(t, s) ≤ Φ(s), t, s ∈ [0, 1],

1
4
Φ(s) ≤ G(t, s), t ∈

[
1
4
,
3
4

]
, s ∈ [0, 1],

with Φ(s) := s(1 − s). Associated to the Green’s function, we consider the
kernel k : [−r, 1] × [0, 1] → R defined as

k(t, s) =
{

G(t, s), if t ≥ 0,
0, if t < 0.

(3.10)

On the other hand, note that the function ŷ(t) = 1−t solves the Dirichlet
BVP {

u′′(t) = 0, t ∈ [0, 1],
u(0) = 1, u(1) = 0,

so we define the function

y(t) =
{

ω(t), if t ≤ 0,
ŷ(t)ω(0), if t > 0,

(3.11)

which will be the vertex of our affine cone.
To apply the theory of the previous section, we will work in the Banach

space of continuous functions X = C([−r, 1]), endowed with the usual sup-
norm, ‖·‖[−r,1] , and the cone

K =

{
u ∈ C([−r, 1], [0, ∞)) : u(t) = 0 for all t ∈ [−r, 0], min

t∈[1/4,3/4]
u(t) ≥ 1

4
‖u‖[0,1]

}
.

Observe that K is a normal cone with normal constant c = 1 and that
‖u‖[−r,1] = ‖u‖[0,1] for all u ∈ K. Now, for the vertex y defined in (3.11), we
consider the translate of the cone K given by

Ky := y + K = {y + u : u ∈ K},

and for each ρ > 0, we denote by Ky,ρ, the relatively open-bounded set

Ky,ρ :=
{

y + u : u ∈ K, ‖u‖[0,1] < ρ
}

.

We will look for solutions of the following perturbed Hammerstein in-
tegral equation:

u(t) = y(t) + λ

∫ 1

0

k(t, s)f(s, u(s), u(σ(s))) ds =: y(t) + λ Tu(t), t ∈ [−r, 1],

(3.12)

located in the affine cone Ky.

Definition 3.1. By a solution of the problem (3.7)–(3.9), we mean a solution
u ∈ C([−r, 1],R) of the integral equation (3.12).
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Before doing so, we need to define the type of regions where f is allowed
to be discontinuous. The concept of admissible discontinuity curve used here
has been widely employed in [12].

Definition 3.2. A λ-admissible discontinuity curve for the second-order
parameter-dependent differential equation u′′ + λ f(t, u, u(σ)) = 0 is a W 2,1

function γ : [a, b] ⊂ [0, 1] → [0,∞) satisfying that there exist ε > 0 and
ψ ∈ L1(a, b), ψ(t) > 0 for a.a. t ∈ [a, b], such that either

−γ′′(t) + ψ(t) < λf(t, y, z) for a.a. t ∈ [a, b],
all y ∈ [γ(t) − ε, γ(t) + ε] and all z ∈ [0,∞) (3.13)

or

−γ′′(t) − ψ(t) > λf(t, y, z) for a.a. t ∈ [a, b],
all y ∈ [γ(t) − ε, γ(t) + ε] and all z ∈ [0,∞). (3.14)

Remark 3.3. Since f is non-negative, to have that γ is a λ-admissible dis-
continuity curve for the differential equation (3.7) and any λ > 0, it suffices
that

0 < γ′′(t) for a.a. t ∈ [a, b].

Indeed, one may check that condition (3.13) holds with ψ(t) = γ′′(t)/2, t ∈
[a, b].

Let us now state and prove the main result of this section.

Theorem 3.4. Let ρ > 0 and assume that the following conditions hold:
(H1) any composition t ∈ [0, 1] �→ f(t, u(t), v(t)) is measurable provided that

u, v ∈ C([0, 1], [0,∞));
(H2) there exists Mρ ∈ L1([0, 1]), such that

f(t, u, v) ≤ Mρ(t) for a.a. t ∈ [0, 1] and all (u, v)with
0 ≤ u, v ≤ ρ + ‖ω‖[−r,0] ;

(H3) there exists δρ ∈ L1([1/4, 3/4]), such that

f(t, u, v) ≥ δρ(t) for a.a. t ∈ [1/4, 3/4] and all (u, v)with
0 ≤ u, v ≤ ρ + ‖ω‖[−r,0]

and

δ̄ := sup
t∈[1/4,3/4]

∫ 3/4

1/4

k(t, s)δρ(s) ds > 0;

(H4) there exists a countable number of curves γn : In = [an, bn] → [0,∞),
n ∈ N, such that for a.a. t ∈ [0, 1], the function f(t, ·, ·) is continuous
on
(
[0,∞)\⋃n:t∈In

{γn(t)}) × [0,∞) and, moreover, each γn is a λ-
admissible discontinuity curve for each λ ∈ (0, λ̄] and some λ̄ > ρ/δ̄.

Then, there exist λρ ∈ (0, λ̄) and uρ ∈ ∂ Ky,ρ that satisfy the integral equation
(3.12).
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Proof. Let us divide the proof in several steps.
Step 1. The operator T, defined in (3.12), maps the set Ky,ρ into the

cone K and, moreover, T Ky,ρ is relatively compact.
First, let u ∈ Ky,ρ be arbitrarily fixed and let us show that Tu ∈ K. By

definition

Tu(t) =
∫ 1

0

k(t, s)f(s, u(s), u(σ(s))) ds, t ∈ [−r, 1].

The continuity of the kernel k, jointly with hypothesis (H1), (H2) and the
constant sign of f and k, imply that Tu ∈ C([−r, 1], [0,∞)). Moreover, since
k(t, s) = 0 for all t ≤ 0, we have that Tu(t) = 0 for all t ∈ [−r, 0]. Now, for
t ∈ [1/4, 3/4], we have

Tu(t) =
∫ 1

0

G(t, s)f(s, u(s), u(σ(s))) ds

≥ 1
4

∫ 1

0

Φ(s)f(s, u(s), u(σ(s))) ds ≥ 1
4

‖Tu‖[0,1] ,

as a consequence of the properties of the Green’s function G stated above.
In conclusion, Tu ∈ K.

On the other hand, the compactness of the set T Ky,ρ follows from
assumption (H2) and the continuity of the kernel k, combined with a careful
use of the Arzelà–Ascoli theorem (see [22]).

Step 2. For each λ ∈ (0, λ̄], the operator y + λT satisfies that

{u} ∩ {y + λT(u)} ⊂ {y + λT (u)} for every u ∈ Ky,ρ, (3.15)

where λ̄ is fixed by hypothesis (H4).
Fix arbitrary λ ∈ (0, λ̄] and u ∈ Ky,ρ. Now, consider two different cases:
Case 1. m ({t ∈ In : u(t) = γn(t)}) = 0 for all n ∈ N (where m denotes

Lebesgue measure).
Let us prove that T is continuous at u, which implies that T(u) =

{T (u)}, and thus, condition (3.15) holds for such u. Indeed, in this case, we
have that for a.a. t ∈ [0, 1], the function f(t, ·, ·) is continuous at (u(t), u(σ(t))).
Hence, if uk → u uniformly in [−r, 1], then

f(t, uk(t), uk(σ(t))) → f(t, u(t), u(σ(t))) for a.a. t ∈ [0, 1],

which implies, due to Lebesgue’s dominated convergence theorem, that Tuk →
Tu in C([−r, 1]).

Case 2. m ({t ∈ In : u(t) = γn(t)}) > 0 for some n ∈ N.
In this case, one can show that u /∈ y + λT(u), which implies that

condition (3.15) holds for such u. The proof is based on condition (H4) and the
fact that the function γn is a λ-admissible discontinuity curve for the problem.
It can be replicated following the reasoning in the proof of Proposition 4.7,
Case 2, in [10].

Step 3. It holds that

inf
{

‖v‖[−r,1] : v ∈ Tu, u ∈ ∂ Ky,ρ

}
≥ δ̄ > 0.
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For u ∈ ∂ Ky,ρ and ε > 0, take ui ∈ Bε(u)∩Ky,ρ and λi ≥ 0 with
∑

λi =
1, i = 1, 2, . . . ,m. Then, by assumption (H3), we have for t ∈ [1/4, 3/4]

m∑

i=1

λi Tui(t) =
m∑

i=1

λi

∫ 1

0

k(t, s)f(s, ui(s), ui(σ(s))) ds

≥
m∑

i=1

λi

∫ 3/4

1/4

k(t, s)f(s, ui(s), ui(σ(s))) ds

≥
m∑

i=1

λi

∫ 3/4

1/4

k(t, s)δρ(s) ds

=
∫ 3/4

1/4

k(t, s)δρ(s) ds.

Hence, for any v ∈ co T
(
Bε(u) ∩ Ky,ρ

)
, we have

‖v‖[−r,1] ≥ ‖v‖[1/4,3/4] ≥ sup
t∈[1/4,3/4]

∫ 3/4

1/4

k(t, s)δρ(s) ds = δ̄.

Since Tu ⊂ co T
(
Bε(u) ∩ Ky,ρ

)
, it follows that ‖v‖[−r,1] ≥ δ̄ > 0 for any

v ∈ Tu, as wished.
Therefore, the conclusion follows from Theorem 2.13. �

Remark 3.5. We emphasize that hypotheses (H1), (H2), and (H4) do not
imply that f be a Carathéodory map, since, due to (H4), the function f can
be discontinuous with respect to the last variables.

Furthermore, note that if, for each (x, y) ∈ [0,∞) × [0,∞), the map
t ∈ [0, 1] �→ f(t, x, y) is measurable and, for a.a. t ∈ [0, 1], the map (x, y) �→
f(t, x, y) is continuous, then condition (H1) holds. However, the measurability
of the map t ∈ [0, 1] �→ f(t, x, y) together with (H4) does not imply necessar-
ily that condition (H1) holds. More information about the measurability of
compositions in this setting can be found in [8, Section 3.1].

Corollary 3.6. Let ρ > 0 and assume that conditions (H1)–(H3) hold and,
moreover,
(H∗

4 ) there exist a countable number of curves γn : In = [an, bn] → [0,∞),
n ∈ N, such that γ′′

n > 0 and for a.a. t ∈ [0, 1], the function f(t, ·, ·)
is continuous on

(
[0,∞)\⋃n:t∈In

{γn(t)})× [0,∞).
Then, there exist λρ > 0 and uρ ∈ ∂ Ky,ρ that satisfy the integral equation
(3.12).

Proof. It follows from Theorem 3.4 together with Remark 3.3. �

Consider the special case of (3.7) where the nonlinearity can be seen as
a discontinuous perturbation of a Carathéodory function, that is

u′′(t) + λ (g(t, u(σ(t))) + h(u(t))) = 0, t ∈ [0, 1], (3.16)

where g : [0, 1]× [0,∞) → [0,∞) is a Carathéodory function and h : [0,∞) →
[0,∞) is locally bounded and continuous except at most at a countable num-
ber of points.
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Corollary 3.7. Assume that the following conditions hold:
(C1) g satisfies the Carathéodory conditions, namely,

(a) g(·, v) is measurable for each fixed v ∈ [0,∞);
(b) g(t, ·) is continuous for a.a. t ∈ [0, 1];
(c) for each R > 0, there exists MR ∈ L1([0, 1]), such that

g(t, v) ≤ MR(t) for a.a. t ∈ [0, 1] and all v ∈ [0, R];

(C2) h is locally bounded, t �→ h(u(t)) is measurable for each non-negative
continuous function u, and there exists a countable set A, such that h
is continuous in [0,∞)\A;

(C3) there exists δ ∈ L1([0, 1]), δ(t) > 0 for a.a. t ∈ [0, 1], such that

g(t, v) ≥ δ(t) for a.a. t ∈ [0, 1] and all v ≥ 0.

Then, for each ρ > 0, there exist λρ > 0 and uρ ∈ ∂ Ky,ρ that satisfy the
BVP (3.16)–(3.8)–(3.9).

Proof. Observe that, for each ρ > 0, Theorem 3.4 can be applied to the
function

f(t, u, v) = g(t, v) + h(u).

Note that hypotheses (H1)–(H3) are satisfied.
Now, consider the countable set A where h may be discontinuous and

denote A = {ak : k ∈ N}. Define the constant functions γn : [0, 1] → [0,∞)
given by γn(t) = an, t ∈ [0, 1], n ∈ N. For each λ > 0 fixed, choose the L1-
function ψ(t) = λ δ(t), t ∈ [0, 1]. Then, each function γn satisfies condition
(3.13), and so, it is a λ-admissible discontinuity curve. �

Now, let us restrict our efforts to the particular case of problem (3.7)–
(3.9) in which the deviated argument is given by a continuously differentiable
function σ with constant derivative equal to 1 or −1. Notice that it covers
the meaningful situations of equations with delay (where σ(t) = t − r) or
with reflection of the argument (where, for instance, σ(t) = 1 − r − t).

In this case, we are able to prove another version of Theorem 3.4 where
the nonlinearity f may be more discontinuous. More precisely, we weaken
assumption (H4) allowing f to be discontinuous w.r.t. the second and third
variables over the graphs of two countable families of functions.

Theorem 3.8. Let ρ > 0 and assume conditions (H1)–(H3) in Theorem 3.4
hold. Moreover, suppose that σ : [0, 1] → [−r, 1] is a continuously differen-
tiable function with constant derivative σ′ = ±1 and the following assumption
holds:
(D) there exist two countable families of curves γn : In = [an, bn] → [0,∞),

n ∈ N, and Γj : Ij = [cj , dj ] → [0,∞), j ∈ N, such that for a.a.
t ∈ [0, 1], the function

f(t, ·, ·) is continuous on

(
[0, ∞)\

⋃

n:t∈In

{γn(t)}
)

×
⎛

⎝[0, ∞)\
⋃

j:t∈Ij

{Γj(t)}
⎞

⎠ .
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For each λ ∈ (0, λ̄] with λ̄ > ρ/δ̄, each function γn is a λ-admissible discon-
tinuity curve and each function Γj satisfies that

(a) Γj(t) 
= ω(σ(t)) for a.a. t ∈ Ij ∩ σ−1([−r, 0]);
(b) the restriction of Γj to Ij ∩ σ−1([0, 1]) satisfies either of the following

conditions: there exists εj > 0 and ψj ∈ L1(Ij), ψj(t) > 0 for a.a.
t ∈ Ij ∩ σ−1([0, 1]), such that
(a) −Γ′′

j (t) + ψj(t) < λ f(σ(t), y, z) for a.a. t ∈ Ij ∩ σ−1([0, 1]), all
y ∈ [Γj(t) − εj ,Γj(t) + εj ] and all z ∈ [0,∞); or

(b) −Γ′′
j (t) − ψj(t) > λ f(σ(t), y, z) for a.a. t ∈ Ij ∩ σ−1([0, 1]), all

y ∈ [Γj(t) − εj ,Γj(t) + εj ] and all z ∈ [0,∞).
Then, there exist λρ ∈ (0, λ̄) and uρ ∈ ∂ Ky,ρ that satisfy the integral

equation (3.12), that is, they solve the problem (3.7)–(3.9).

Proof. It follows in line of the proof of Theorem 3.4 as a consequence of
Theorem 2.13. Observe that it suffices to rewrite Step 2. Let us prove that
for each λ ∈ (0, λ̄], the operator y + λT satisfies that

{u} ∩ {y + λT(u)} ⊂ {y + λT (u)} for every u ∈ Ky,ρ, (3.17)

where λ̄ is fixed by assumption (D).
Fix arbitrary λ ∈ (0, λ̄] and u ∈ Ky,ρ. Now, consider three different

cases:
Case 1. m ({t ∈ In : u(t) = γn(t)} ∪ {t ∈ Ij : u(σ(t)) = Γj(t)}) = 0 for

all j, n ∈ N. Then, for a.a. t ∈ [0, 1], the function f(t, ·, ·) is continuous at
(u(t), u(σ(t))), and so, T is continuous at u.

Case 2. m ({t ∈ Ij : u(σ(t)) = Γj(t)}) > 0 for some j ∈ N. Let us prove
that u /∈ y+λTu, which can be justified as in the proof of [10, Proposition 4.7],
but we include the reasoning here again for completeness.

Since u ∈ Ky, we have u(s) = y(s) = ω(s) for all s ∈ [−r, 0], and thus,
u(σ(t)) = ω(σ(t)) for all t ∈ σ−1([−r, 0]). Now, condition (D), (a), implies
that

m
({

t ∈ Ij ∩ σ−1([−r, 0]) : u(σ(t)) = Γj(t)
})

= 0 for all j ∈ N.

Hence, we can fix some j ∈ N, such that

m
({

t ∈ Ij ∩ σ−1([0, 1]) : u(σ(t)) = Γj(t)
})

> 0.

By condition (D), (b), we can assume that there exist εj > 0 and ψj ∈ L1(Ij),
ψj(t) > 0 on Ij , such that

−Γ′′
j (t) + ψj(t) < λf(σ(t), y, z) for a.a. t ∈ Ij ∩ σ−1([0, 1]),

all y ∈ [Γj(t) − εj ,Γj(t) + εj ] and all z ∈ [0,∞). (3.18)

In what follows, let us denote J :=
{
t ∈ Ij ∩ σ−1([0, 1]) : u(σ(t)) = Γj(t)

}

and M := λ (Mρ ◦ σ) . By technical results of Lebesgue measure (see [10,
Lemma 4.2 and Corollary 4.3]), we know that there exists a measurable set
J0 ⊂ J with m(J) = m(J0), such that for all τ0 ∈ J0

lim
t→τ+

0

∫
[τ0,t]\J

M(s) ds
∫ t

τ0
ψj(s) ds

= 0 = lim
t→τ−

0

∫
[t,τ0]\J

M(s) ds
∫ τ0

t
ψj(s) ds

(3.19)



  149 Page 14 of 19 A. Calamai et al. MJOM

and, moreover, there is J1 ⊂ J0 with m(J0\J1) = 0, such that for all τ0 ∈ J1

lim
t→τ+

0

∫
[τ0,t]∩J0

ψj(s) ds
∫ t

τ0
ψj(s) ds

= 1 = lim
t→τ−

0

∫
[t,τ0]∩J0

ψj(s) ds
∫ τ0

t
ψj(s) ds

. (3.20)

Now, fix τ0 ∈ J1. By (3.19) and (3.20), there exists t̄ > 0 sufficiently close to
0, such that for all t ∈ [t̄, 2 t̄], the following inequalities hold:

2
∫

[τ0,τ0+t]\J

M(s) ds <
1
4

∫ τ0+t

τ0

ψj(s) ds,

∫

[τ0,τ0+t]∩J

ψj(s) ds >
1
2

∫ τ0+t

τ0

ψj(s) ds

and

2
∫

[τ0−t,τ0]\J

M(s) ds <
1
4

∫ τ0

τ0−t

ψj(s) ds,

∫

[τ0−t,τ0]∩J

ψj(s) ds >
1
2

∫ τ0

τ0−t

ψj(s) ds.

Define the positive number

r =
t̄

8
min

{∫ τ0

τ0−t̄

ψj(s) ds,

∫ τ0+t̄

τ0

ψj(s) ds

}
.

Let εj > 0 be given above. Let us show that for every finite family
ui ∈ Bεj

(u) ∩ Ky,ρ and μi ∈ [0, 1] (i = 1, 2, . . . ,m), with
∑

μi = 1, we have
∥∥∥∥∥u −

(
y + λ

m∑

i=1

μiTui

)∥∥∥∥∥
[0,1]

≥ r, (3.21)

which implies u /∈ y + λTu. Notice that we can suppose without loss of
generality that the restriction of u to [0, 1], denoted also as u, satisfies that
u ∈ y + λQ where Q is the subset of C([0, 1]) defined as

Q =

{
u ∈ C1([0, 1]) :

∣∣u′(t) − u′(s)
∣∣ ≤
∫ t

s

Mρ(r) dr whenever 0 ≤ s ≤ t ≤ 1

}
.

Indeed, due to assumption (H2), then

Tu(t) =
∫ 1

0

k(t, s)f(s, u(s), u(σ(s))) ds ≤
∫ 1

0

Mρ(s) ds.

Therefore, T
(
Ky,ρ

) ⊂ Q and Q is a closed-convex subset of C([0, 1]) (see [10,
Lemma 4.5]), which implies that T

(
Ky,ρ

) ⊂ Q.

To prove (3.21), for simplicity, let us denote z = λ
∑m

i=1 μiTui and
v = u − y. For a.a. t ∈ J, we have by the chain rule that

(z ◦ σ)′′ (t) = z′′(σ(t)) (σ′(t))2 + z′(σ(t))σ′′(t)

and, since σ′ = ±1,

(z ◦ σ)′′ (t) = z′′(σ(t)) = −λ

m∑

i=1

μif(σ(t), ui(σ(t)), ui(σ(σ(t)))).
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On the other hand, for every i ∈ {1, . . . ,m} and t ∈ J, we deduce from
ui ∈ Bεj

(u) that

|ui(σ(t)) − Γj(t)| = |ui(σ(t)) − u(σ(t))| ≤ εj ,

and then, condition (3.18) ensures that for a.a. t ∈ J

z′′(σ(t)) = −λ

m∑

i=1

μif(σ(t), ui(σ(t)), ui(σ(σ(t))))

<

m∑

i=1

μi

(
Γ′′

j (t) − ψj(t)
)

= Γ′′
j (t) − ψj(t) = u′′(σ(t)) − ψj(t).

Note that y′′(s) = 0 for all s > 0, so we obtain that for a.a. t ∈ J

z′′(σ(t)) < u′′(σ(t)) − y′′(σ(t)) − ψj(t) = v′′(σ(t)) − ψj(t).

By integration, for t ∈ [t̄, 2 t̄]

z′(σ(τ0)) − z′(σ(τ0 − t)) =
∫ τ0

τ0−t

z′′(σ(s)) ds =
∫

[τ0−t,τ0]∩J

z′′(σ(s)) ds

+
∫

[τ0−t,τ0]\J

z′′(σ(s)) ds

<

∫

[τ0−t,τ0]∩J

v′′(σ(s)) ds −
∫

[τ0−t,τ0]∩J

ψj(s) ds

+
∫

[τ0−t,τ0]\J

M(s) ds

= v′(σ(τ0)) − v′(σ(τ0 − t)) −
∫

[τ0−t,τ0]\J

v′′(σ(s)) ds

−
∫

[τ0−t,τ0]∩J

ψj(s) ds +
∫

[τ0−t,τ0]\J

M(s) ds

≤ v′(σ(τ0)) − v′(σ(τ0 − t)) −
∫

[τ0−t,τ0]∩J

ψj(s) ds

+ 2
∫

[τ0−t,τ0]\J

M(s) ds

< v′(σ(τ0)) − v′(σ(τ0 − t)) − 1
4

∫ τ0

τ0−t

ψj(s) ds.

Hence, we have for all t ∈ [t̄, 2 t̄] that

z′(σ(τ0 − t)) − v′(σ(τ0 − t)) > z′(σ(τ0)) − v′(σ(τ0)) +
1
4

∫ τ0

τ0−t

ψj(s) ds.

In case z′(σ(τ0)) ≥ v′(σ(τ0)), then

z′(σ(τ0 − t)) − v′(σ(τ0 − t)) >
1
4

∫ τ0

τ0−t̄

ψj(s) ds for all t ∈ [t̄, 2 t̄],

so by integration

z(σ(τ0 − t̄)) − v(σ(τ0 − t̄)) > z(σ(τ0 − 2 t̄)) − v(σ(τ0 − 2 t̄)) +
t̄

4

∫ τ0

τ0−t̄

ψj(s) ds
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≥ z(σ(τ0 − 2 t̄)) − v(σ(τ0 − 2 t̄)) + 2 r.

Then, either z(σ(τ0−2 t̄))−v(σ(τ0−2 t̄)) < −r or z(σ(τ0−t̄))−v(σ(τ0−t̄)) > r,
and thus, ‖v − z‖ > r, as wished.

It can be seen in a similar way that

z′(σ(τ0)) − v′(σ(τ0)) > z′(σ(τ0 + t)) − v′(σ(τ0 + t)) +
1

4

∫ τ0+t

τ0

ψj(s) ds, t ∈ [t̄, 2 t̄],

which ensures that ‖v − z‖ > r if z′(σ(τ0)) < v′(σ(τ0)).
Case 3. m ({t ∈ In : u(t) = γn(t)}) > 0 for some n ∈ N. It follows as in

Case 2.
Finally, Theorem 2.13 gives the conclusion. �

Example 3.9. Consider the function φ : R → R given by

φ(x) =
∑

n:qn<x

2−n,

where {qn}n∈N is an enumeration of the rational numbers. Observe that φ is
discontinuous at the rational numbers and continuous at the irrational ones.

We study the existence of solutions for the following BVP with delay:
⎧
⎪⎪⎨

⎪⎪⎩

−u′′(t) = λ

(
2 − φ(u(t) − t2)√

t
+ φ(u(t − 1/2) − t2)(u(t))3

)
, t ∈ [0, 1],

u(t) =
√
1 + 2 t, t ∈ [−1/2, 0],

u(1) = 0.

(3.22)

In this case

f(t, u, v) =
2 − φ(u − t2)√

t
+ φ(v − t2)u3, (t, u, v) ∈ [0, 1] × [0, +∞) × [0, +∞).

For a fixed ρ > 0, we can choose

Mρ(t) =
2√
t

+ (ρ + 1)3 and δρ(t) = δ(t) =
1√
t

(t ∈ [0, 1]),

to check hypotheses (H2) and (H3). On the other hand, for each rational qn,
we define the function γn : [0, 1] → R as

γn(t) = t2 + qn,

and so, for a.a. t ∈ [0, 1], f(t, ·, ·) is continuous on ([0,∞)\⋃n{γn(t)}) ×
([0,∞)\⋃n{γn(t)}) . Note that for each n ∈ N and each λ > 0

−γ′′
n(t) = −2 < 0 ≤ λ f(t, u, v) for a.a. t ∈ [0, 1] and all u, v ∈ [0,+∞),

and thus, condition (D) in Theorem 3.8 holds. Therefore, this result ensures
that the BVP (3.22) has uncountable many pairs of solutions and parameters
(uρ, λρ).
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Remark 3.10. We stress that the theory presented so far is applicable and
represents a novelty even in the special case of eigenvalue problems for ODEs,
in presence of discontinuities. To illustrate this fact, one may consider the
eigenvalue problem

u′′(t) = λf̃(u(t)), t ∈ (0, 1); u(0) = u(1) = 0, (3.23)

a classical problem studied in the book of Guo and Lakshmikantham [16,
Example 2.3.2], where in our case, the nonlinearity can be allowed to be
discontinuous.
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[7] Carl, S., Heikkillä, S.: Nonlinear Differential Equations in Ordered Spaces.
Chapman & Hall/CRC, Boca Raton (2000)
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