A recent conjecture that appeared in three papers by Bigdeli–Faridi, Dochtermann, and Nikseresht, is that every simplicial complex whose clique complex has shellable Alexander dual, is ridge-chordal. This strengthens the long-standing Simon's conjecture that the k-skeleton of the simplex is extendably shellable, for any k. We show that the stronger conjecture has a negative answer, by exhibiting an infinite family of counterexamples.
Non-ridge-chordal complexes whose clique complex has shellable Alexander dual / Benedetti, Bruno; Bolognini, Davide. - In: JOURNAL OF COMBINATORIAL THEORY. SERIES A. - ISSN 0097-3165. - ELETTRONICO. - 180:(2021). [10.1016/j.jcta.2021.105430]
Non-ridge-chordal complexes whose clique complex has shellable Alexander dual
Bolognini, Davide
2021-01-01
Abstract
A recent conjecture that appeared in three papers by Bigdeli–Faridi, Dochtermann, and Nikseresht, is that every simplicial complex whose clique complex has shellable Alexander dual, is ridge-chordal. This strengthens the long-standing Simon's conjecture that the k-skeleton of the simplex is extendably shellable, for any k. We show that the stronger conjecture has a negative answer, by exhibiting an infinite family of counterexamples.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0097316521000297-main.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
398.02 kB
Formato
Adobe PDF
|
398.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Benedetti_Non-ridge-chordal_post-print_2021.pdf
Open Access dal 02/02/2023
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Creative commons
Dimensione
342.72 kB
Formato
Adobe PDF
|
342.72 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.