Climate change is one of the most significant challenges faced in this century. To limit the rise in global average temperatures below 1.5\,°C, it is crucial to decrease the electrical energy usage. Therefore, it is vital to promote energy efficiency through sustainable practices. Devices should be used efficiently to avoid energy waste. In the residential setting, individuals can significantly contribute to energy saving, especially if they are aware of their consumption. The constant availability of energy consumption profiles has led to the development of advanced techniques to monitor loads inside buildings and provide residential users with improved awareness of their energy consumption and usage habits. One such technique is Non-Intrusive Load Monitoring (NILM), which detects the states of appliances and estimates the power consumption of individual loads in the building based only on the building’s aggregate meter readings. Nowadays, most of the approaches proposed in the literature are based on deep learning, which has proven superior to other methods. Nonetheless, they still have to deal with aspects related to real-world applicability. Firstly, there is the issue of the availability of labeled datasets. Labels should be provided by annotators, who are often end-user, but this process is time-consuming and prone to errors. Second, computation is usually done in the cloud, which is far from where the data are acquired. This requires data transmission and can result in latency in the service output. To mitigate the above issues, this thesis proposes several methodologies that follow the Human-Centred Computing and the Edge Computing paradigms. As a consequence, the developed strategies aim to lighten the effort requested to the user for providing labels while enhancing the performance. At the same time, the computation is lightened by reducing algorithms complexity while maintaining performance. The methods have been developed and evaluated on publicly available datasets, demonstrating their superiority compared to benchmark strategies. Moreover, the final performance is increased, even with less data and simpler structures. Future directions considers to train networks locally to promote adaptability and reliability. Additionally, hybrid monitoring strategies can be investigated and integrated with energy management systems or demand-response programs based on the user requirements.
Il cambiamento climatico è una delle sfide più significative affrontate in questo secolo. Per limitare l’aumento della temperatura media globale al di sotto di 1.5 °C, è fondamentale ridurre l’uso di energia elettrica ed è vitale promuovere l’efficienza energetica. I dispositivi elettronici dovrebbero essere utilizzati in modo efficiente per evitare sprechi di energia. Nell’ambito residenziale, gli utenti possono contribuire significativamente al risparmio energetico, soprattutto se consapevoli dei loro consumi. La costante disponibilità di dati di consumo energetico ha portato allo sviluppo di tecniche avanzate per monitorare i carichi all’interno degli edifici e fornire agli utenti residenziali una maggiore consapevolezza delle loro abitudini di consumo elettrico. Il monitoraggio non intrusivo del carico stima lo stato e il consumo energetico dei singoli elettrodomestici nell’edificio, basandosi solo sulle letture aggregate del contatore. Oggigiorno, la maggior parte degli approcci proposti in letteratura si basa sul Deep Learning, poiché si è dimostrato superiore ad altri metodi inizialmente sviluppati. Tuttavia, devono essere ancora affrontati aspetti legati all’applicabilità nel mondo reale. In primo luogo, c’è il problema della disponibilità di dati annotati per addestrare approcci supervisionati. Chi fornisce le annotazioni spesso coincide con l’utente finale e il processo di annotazione può essere lungo, scomodo e soggetto ad errori. In secondo luogo, l’inferenza viene solitamente eseguita nel cloud su macchine ad alte risorse, quindi lontano da dove vengono acquisiti i segnali. Questo richiede la trasmissione dei dati e può comportare ritardi del servizio e problemi di privacy. Per mitigare le suddette problematiche, questa tesi propone metodologie basate sui paradigmi dello Human-centred Computing e dell’ Edge Computing. Le strategie sviluppate mirano a ridurre lo sforzo richiesto all’utente per fornire le annotazioni mantenendo stabili o migliorando le prestazioni. Inoltre, i metodi mirano a diminuire la complessità strutturale e computazionale delle architetture utilizzate. Gli approcci sono stati sviluppati e valutati su dataset pubblici, dimostrando la loro superiorità rispetto allo stato dell’arte. Le prestazioni finali risultano superiori utilizzando meno dati, annotazioni più deboli e strutture di rete più semplici che risultano adatte per l’installazione su dispositivi a basse risorse. Ricerche future considerano di addestrare le reti neurali localmente, per promuovere l’adattabilità e l’affidabilità del monitoraggio. Inoltre, possono essere sviluppate strategie di monitoraggio ibride e integrate con sistemi di gestione dell’energia.
Deep Learning Techniques for Edge-Centric Non-Intrusive Load Monitoring / Tanoni, Giulia. - (2024 Jun 24).
Deep Learning Techniques for Edge-Centric Non-Intrusive Load Monitoring
TANONI, GIULIA
2024-06-24
Abstract
Climate change is one of the most significant challenges faced in this century. To limit the rise in global average temperatures below 1.5\,°C, it is crucial to decrease the electrical energy usage. Therefore, it is vital to promote energy efficiency through sustainable practices. Devices should be used efficiently to avoid energy waste. In the residential setting, individuals can significantly contribute to energy saving, especially if they are aware of their consumption. The constant availability of energy consumption profiles has led to the development of advanced techniques to monitor loads inside buildings and provide residential users with improved awareness of their energy consumption and usage habits. One such technique is Non-Intrusive Load Monitoring (NILM), which detects the states of appliances and estimates the power consumption of individual loads in the building based only on the building’s aggregate meter readings. Nowadays, most of the approaches proposed in the literature are based on deep learning, which has proven superior to other methods. Nonetheless, they still have to deal with aspects related to real-world applicability. Firstly, there is the issue of the availability of labeled datasets. Labels should be provided by annotators, who are often end-user, but this process is time-consuming and prone to errors. Second, computation is usually done in the cloud, which is far from where the data are acquired. This requires data transmission and can result in latency in the service output. To mitigate the above issues, this thesis proposes several methodologies that follow the Human-Centred Computing and the Edge Computing paradigms. As a consequence, the developed strategies aim to lighten the effort requested to the user for providing labels while enhancing the performance. At the same time, the computation is lightened by reducing algorithms complexity while maintaining performance. The methods have been developed and evaluated on publicly available datasets, demonstrating their superiority compared to benchmark strategies. Moreover, the final performance is increased, even with less data and simpler structures. Future directions considers to train networks locally to promote adaptability and reliability. Additionally, hybrid monitoring strategies can be investigated and integrated with energy management systems or demand-response programs based on the user requirements.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Tanoni.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza d'uso:
Pubblico dominio-Nessun diritto riservato all'autore/editore
Dimensione
92.18 MB
Formato
Adobe PDF
|
92.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.