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Abstract

Climate change is one of the most significant challenges faced in this century.
To limit the rise in global average temperatures below 1.5°C, it is crucial to
decrease the electrical energy usage. Therefore, it is vital to promote energy
efficiency through sustainable practices. Devices should be used efficiently to
avoid energy waste. In the residential setting, individuals can significantly con-
tribute to energy saving, especially if they are aware of their consumption. The
constant availability of energy consumption profiles has led to the development
of advanced techniques to monitor loads inside buildings and provide residential
users with improved awareness of their energy consumption and usage habits.
One such technique is Non-Intrusive Load Monitoring (NILM), which detects
the states of appliances and estimates the power consumption of individual
loads in the building based only on the building’s aggregate meter readings.
Nowadays, most of the approaches proposed in the literature are based on deep
learning, which has proven superior to other methods. Nonetheless, they still
have to deal with aspects related to real-world applicability. Firstly, there is
the issue of the availability of labeled datasets. Labels should be provided by
annotators, who are often end-user, but this process is time-consuming and
prone to errors. Second, computation is usually done in the cloud, which is
far from where the data are acquired. This requires data transmission and
can result in latency in the service output. To mitigate the above issues, this
thesis proposes several methodologies that follow the Human-Centred Com-
puting and the Edge Computing paradigms. As a consequence, the developed
strategies aim to lighten the effort requested to the user for providing labels
while enhancing the performance. At the same time, the computation is light-
ened by reducing algorithms complexity while maintaining performance. The
methods have been developed and evaluated on publicly available datasets,
demonstrating their superiority compared to benchmark strategies. Moreover,
the final performance is increased, even with less data and simpler structures.
Future directions considers to train networks locally to promote adaptability
and reliability. Additionally, hybrid monitoring strategies can be investigated
and integrated with energy management systems or demand-response programs
based on the user requirements.

11
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Abstract

Il cambiamento climatico € una delle sfide piu significative affrontate in questo
secolo. Per limitare 'aumento della temperatura media globale al di sotto di
1.5 °C, e fondamentale ridurre I'uso di energia elettrica ed e vitale promuo-
vere efficienza energetica. I dispositivi elettronici dovrebbero essere utilizzati
in modo efficiente per evitare sprechi di energia. Nell’ambito residenziale, gli
utenti possono contribuire significativamente al risparmio energetico, soprat-
tutto se consapevoli dei loro consumi. La costante disponibilita di dati di con-
sumo energetico ha portato allo sviluppo di tecniche avanzate per monitorare i
carichi all’interno degli edifici e fornire agli utenti residenziali una maggiore con-
sapevolezza delle loro abitudini di consumo elettrico. Il monitoraggio non intru-
sivo del carico stima lo stato e il consumo energetico dei singoli elettrodomestici
nell’edificio, basandosi solo sulle letture aggregate del contatore. Oggigiorno, la
maggior parte degli approcci proposti in letteratura si basa sul Deep Learning,
poiché si e dimostrato superiore ad altri metodi inizialmente sviluppati. Tut-
tavia, devono essere ancora affrontati aspetti legati all’applicabilita nel mondo
reale. In primo luogo, c’¢ il problema della disponibilita di dati annotati per
addestrare approcci supervisionati. Chi fornisce le annotazioni spesso coincide
con 'utente finale e il processo di annotazione puo essere lungo, scomodo e
soggetto ad errori. In secondo luogo, l'inferenza viene solitamente eseguita nel
cloud su macchine ad alte risorse, quindi lontano da dove vengono acquisiti i
segnali. Questo richiede la trasmissione dei dati e pud comportare ritardi del
servizio e problemi di privacy. Per mitigare le suddette problematiche, questa
tesi propone metodologie basate sui paradigmi dello Human-centred Comput-
ing e dell’ Edge Computing. Le strategie sviluppate mirano a ridurre lo sforzo
richiesto all’utente per fornire le annotazioni mantenendo stabili o migliorando
le prestazioni. Inoltre, i metodi mirano a diminuire la complessita strutturale
e computazionale delle architetture utilizzate. Gli approcci sono stati svilup-
pati e valutati su dataset pubblici, dimostrando la loro superiorita rispetto allo
stato dell’arte. Le prestazioni finali risultano superiori utilizzando meno dati,
annotazioni piu deboli e strutture di rete pit semplici che risultano adatte per
I'installazione su dispositivi a basse risorse. Ricerche future considerano di ad-
destrare le reti neurali localmente, per promuovere 'adattabilita e 'affidabilita
del monitoraggio. Inoltre, possono essere sviluppate strategie di monitoraggio
ibride e integrate con sistemi di gestione dell’energia.
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Chapter 1.

Introduction

Climate change is one of the most significant challenges faced in this century.
To limit the rise in global average temperatures to below 1.5°C, it is crucial
to decrease the electrical energy usage. The growth in electricity consumption
is primarily driven by the household and services sectors, while the industrial
sector’s electricity usage fluctuates with the economic cycle [6].

According to the "Key World Energy Statistics 2021" by the International
Energy Agency [1], the residential sector accounts for 26.6% of energy con-
sumption, commercial and public services account for 21.2%, and the industry
has the highest consumption at 41.9%. As shown in Figure 1.1, the residential
and commercial sectors had an increase between 1973 and 2019. Residential
consumption in particular has been on the rise due to population growth and
the increasing use of technology in daily life.

Renewable energy sources are growing as well. Renewable electricity capac-
ity additions reached an estimated 507 GW in 2023, almost 50% higher than
in 2022. Thus, 2023 marks a step change for renewable power growth over the
next five years[7]. Anyway, in 2021 it was estimated to be only the 10.8% of
the total world energy production together with wind and geothermal sources
[1, 8], thus, they are still insufficient to meet the energy demand. Therefore, it
is vital to promote energy efficiency through sustainable practices. This can be
achieved by efficiently using devices and avoiding energy waste. In the residen-
tial setting, individuals can significantly contribute to energy saving, especially
if they are aware of their consumption. Research has shown that users who
are conscious of their energy consumption are more likely to adopt efficient
technologies and save energy for both financial and environmental reasons [9].
Moreover, active user participation can potentially enhance a household’s en-
ergy flexibility, leading to energy savings of up to 30% [10]. Evidence suggests
that energy awareness motivates end-users to buy energy-efficient products [11],
which could encourage users to actively participate in energy conservation and
invest in devices that yield future energy and monetary savings. A recent re-
view emphasized that providing effective consumption feedback is another way
to engage users actively in the long term [12]. The study’s findings underscore
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Figure 1.1.: Electricity consumption by sector expressed in Exajoule. A total
of 4 Exajoule and 82 Exajoule based on [1], was in 1973 and 2019
respectively. Other categories includes agriculture and fishing.

the need to develop more user-centered strategies and technologies.

Energy awareness can be supported by energy monitoring [13], particularly
through Load Monitoring, which provides detailed consumption information.
In the Smart Grid ecosystem, the Advanced Metering Infrastructure facilitates
communication between utilities and users through bi-directional communi-
cation [14]. By 2025, it is expected that most European countries will have
implemented Smart Meter roll-out to at least 80% of consumers [15]. Smart
meters enable remote measurement and management of a building’s electric-
ity consumption by interfacing with the grid [16], providing new opportunities
for energy service providers to offer real-time personalized energy services to
users within their homes [17]. Additionally, smart meter readings can be used
to trace energy usage and propose strategies for saving energy and balancing
energy supply and demand.

The constant availability of energy consumption profiles has led to the devel-
opment of advanced techniques to monitor loads inside buildings and provide
residential users with improved awareness of their energy consumption and us-
age habits. One such technique is Non-Intrusive Load Monitoring (NILM),
which detects the states of loads and estimates the power consumption of in-
dividual loads in the building based only on the building’s aggregate meter
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Figure 1.2.: Load Monitoring approaches.

readings. Monitoring is software-based thus only one sensor is necessary, that
can coincide with the smart meter already installed in the house or an addi-
tional meter. The other possibility is Intrusive Load Monitoring (ILM) that
relies on the installation of as many sensors as the appliances to be monitored.
Associated with this hardware-based approach, there are sensors’ cost and pos-
sible difficulties or impossibilities to place the sensor on the appliance plug. In
Figure 1.2a and Figure 1.2b a graphical representation describes the two dif-
ferent monitoring approaches. Thus, NILM has become a very active area of
research with widespread smart meter installations in the residential sector.
According to [18], NILM approaches that use signals with sampling frequency
lower or equal to 1 Hz are considered low-frequency while for greater frequen-
cies approaches are considered high-frequency. Since high-frequency data are
related to costly sensors and they are not easily available in practical scenarios,
the focus of this work is on low-frequency approaches.

After the seminal work proposed by Hart [19], several strategies have been
adopted for NILM, but nowadays most of the approaches proposed in the lit-
erature are based on deep learning, demonstrating their superiority over other
methodologies. Nonetheless, they still have to deal with aspects related to
real-world applicability.

The literature works have mainly focused on performance optimization, tak-
ing advantage of supervised learning. They rely on the availability of large
enough quantity of labeled data, that in practical scenarios are difficult to ob-
tain. Although the main consumption is available through the smart meter,
ON and OFF time or power consumption signals of each appliance are available
if sensors are installed in the house or there is an annotator that provides acti-
vations timing. Another aspect, common for deep learning approaches, is the
ability to generalize in unseen environment and different data domain. Specif-
ically for NILM, moving from a data domain (represented by signals from one
household) to another (represented by power signals from a different house)
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can lead to a significant drop in performance. This depends on differences in
users’ habits, type, and number of appliances installed in the house, etc..

The end-user, who will directly use the NILM service in the residential sector,
can also play the role of annotator. This is because he is the closest to the
appliances and their usage patterns and frequency depend on its habits. Also,
the user can participate in annotation collection to promote transfer learning
strategies and alleviate undesired malfunctions of the NILM service.

In this view, the user can play a key role if included in the annotation process
and until now only few works focuses marginally on its role [20, 21].

Regarding the NILM service, although it is provided at the edge of the net-
work, still relies on a computation performed far from the user. Most of the
published NILM approaches employed networks with millions of parameters
that require high computational resource hardware. Due to the large diffusion
of technological devices in human daily life and pervasive computing [22], com-
putation can move closer to the users, to avoid data transmission, bandwidth,
privacy, and latency problems. Only a few works in NILM focused on this
aspect and without considering the practical applicability in unknown domains
where these algorithms will practically perform.

For the above reasons, this work aims to develop new deep learning strategies
for NILM, (i) to focus more on the figure of the user, considering its figure
along the development process by simplifying its role, and (ii) to focus more
on a computation localized at the edge of the network considering practical
implications related to different power signal domains. These objectives are
pursued by developing new NILM techniques following the Human-Centred
Computing and the Edge Computing paradigms, which converge into the Edge-
Centric Computing paradigm [23]. In this direction, the figure of the end-user
is included longitudinally along the development process of NILM strategies,
and the computational burden of the networks will be optimized to enable the
computation closer to the user.

The rest of the thesis is organized as follow. Part I of the thesis continues
with Chapter 2 that describes in detail the background and the contributions
of the present work. Specifically, the formulation of the NILM problem, the
general framework and background about datasets and works with the research
gaps and how this work aims to fill them. Chapter 3 provides details of the
deep learning techniques adopted in this work to develop methodologies and
meet paradigms requirements.

Part II treats the methodologies proposed for user-centred NILM develop-
ment. Chapter 4 collects literature on labeling effort reduction while Chapter 5,
Chapter 6, Chapter 7 and Chapter 8 explain in details the methodologies pro-
posed to fill the related research gaps. A conclusive discussion is exposed in
Chapter 9.
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Part III regards the methodologies for the development of low complexity
NILM approaches. Chapter 10 presents an overview about recent techniques
adopted for complexity reduction in NILM literature. Then, in Chapter 11,
Chapter 12 and Chapter 13 the approaches proposed to fill the gaps are ex-
plained and conclusively discussed in Chapter 14.

Lastly, in Part IV, Chapter 15 discusses the main highlights of this thesis
and future perspectives.

In Part V, details about procedures and information about the benchmark
methods are collected.
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Chapter 2.

Background and Contributions

In this chapter, the general characteristics of NILM will be described. In detail,
first the formulation of the problem is presented, and then the general NILM
framework adopted in literature is presented. Datasets and the state-of-the-art
will be deeply treated in the last sections.

2.1. Problem Statement

The total power measurement of a building can be modelled as the sum of all
M power loads of the building plus noise €(t), from measurement error and

unknown loads:
K

y(t) = ) se()ze(t) + €(t), (2.1)
k=1
where si(t) is the state of activation and z(t) is the power consumed by
appliance k at the time instant ¢.

The problem can be approached mainly into two directions: by estimating
x(t), thus reconstructing the power consumption profile for each appliance
of interest or by estimating s (t), thus reconstructing the state of activation
sample-by-sample for each appliance. Generally, a subset K < K of appliances
are in interest for the monitoring, based for example on their consumption or
frequency usage. Thus, the problem can be reformulated as:

y(t) = Z sEp(t)zk(t) + Z sEp(t)xr(t) + e(t). (2.2)
k=1 k=K+1

The second and third terms can be considered as noise because represent the
undesired contribution. Thus, they generically can be expressed with:

K

v(t) = > se(t)zr(t) + €(t). (2.3)

k=K+1
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Appliance2 0 o0 [1 1 1 1 1 1|

Figure 2.1.: Example of multi-label appliance classification task. For one win-
dow of aggregate power signal the aim is to localize in time for
more than one appliance, where and which appliance is active.
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Appliance 1 Appliance 2

Figure 2.2.: Example of appliance power profile reconstruction task. For one
window of aggregate power signal the aim is to estimate the power
profiles of each appliance of interest.
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Let si(t) be the state that indicates if appliance k is ON at time sample ¢
(si(t) = 1), i.e., if x(t) is greater than a power threshold, or OFF (s(t) = 0).
Then the classification task is to find s;(t) € {0,1}, for all k = 1,..., K and
t =1,...,N. A general version of the appliance classification is the multi-
label appliance classification, where the task is to classify the state of multiple
appliances for the same sample. The aggregate signal y(t) can be divided into
a series of J disjointed windows of size L samples where the j-th window is
represented by the vector:

i =l(GL), - y(GL+ L —1)]" e R (24)
Then, the corresponding series of J disjointed windows of states is:
8§, = [B(jL),8(GL +1),...,8(jL + L —1)] € RE*L, (2.5)

Note that above §(t) = [81(t),...,8k(t)] is a predictions vector at the time
instant .

The appliance-power profile reconstruction consists in solving a regression
task, where the output is a real value. According to recent published works,
power consumption estimation is generally performed for each appliance sep-
arately. Thus, given the aggregate signal y(t), the corresponding series of J
disjointed windows of power samples is:

X; = [R(FL),R(GL+1),..., %L+ L—1))7 e REXL, (2.6)

Figure 2.1 and 2.2 show two graphical examples for both classification and
regression tasks for two appliances while Figure 2.3 shows a real example for
both classification and regression desired output, represented for the same time
period. The appliance monitored is the washing machine.

11
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Figure 2.3.: Examples of output signals for regression (second row) and classi-
fication (third raw), for the same input window (first row).
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Figure 2.4.: NILM framework

2.2. General NILM framework

In Figure 2.4, the General NILM framework is shown. It is composed of the
blocks "Smart Meter Data", "Pre-processing”, "Features Extraction", "Classifi-
cation", "Regression" and "Evaluation'. According to the literature published
until now, all NILM approaches follow these fundamental steps. What is
different is principally how the blocks "Features Extraction" and "Classifica-
tion"/"Regression" are modeled.

"Smart meter data" refers to the acquisition of active power consumption
signals at the main meter. More generally, it can refer also to appliance-level
sub-meters measurements, when a single meter for each appliance is applied
at the device plug. The measurements are affected by errors or missing values
due to sensor failures thus, "Pre-Processing” block refers to the phase in which
signals are processed to fill the holes. Based on the gap entity, different strate-
gies have been adopted [24, 25]. Signals can also necessitate to be down- or
up-sampled based on the desired sampling frequency.

"Features extraction" consists in extracting high-level information from the

12
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raw signals by applying specific statistics or automatically, as it happens for
deep learning. Most common features are V-1 trajectory (V: Voltage, I: Cur-
rent), and Fast Fourier Transform (FFT). Other approaches used directly the
raw power signals. "Classification" and "Regression" refer to the algorithms
that perform the tasks and produce the predictions. In case of supervised or
semi-supervised approaches, the availability of input data and the related de-
sired outputs, generally called ground-truth, is strictly required for at least a
part of the dataset. Considering the NILM tasks described in Section 2.1, for
the regression task the ground-truth coincides with appliance power signal X;
and for the classification task coincides with the states of appliances S; with
values between 0 and 1. The input signal is the aggregate power consumption
of the building. A real example is shown in Figure 2.3.

The relationship between input and output adopted until now in this chapter
is the most general. The objective is always reconstructing sample-by-sample
the desired output. What can be different is the way in which this is addressed,
and there are mainly three models in the literature. The first is represented
by the estimation of the desired disaggregated output with the same length
L of the input window, for this reason called sequence-to-sequence. The sec-
ond is the estimation of the central point of the desired output, also called
sequence-to-point. The third is the estimation of a sub-sequence centred with
the input window, also called sequence-to-subsequence. In Figure 2.5, all the
three models are graphically reported. It is worth to clarify that the same holds
for classification output sg(t).

The last block, "Evaluation" refers to the phase in which the performance
of the algorithms are evaluated on a test set. Common classification metrics
are adopted to evaluate how much the network is able to detect the activation
state. For the regression, some NILM-specific metrics have been proposed.

13
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(a) Sequence-to-sequence.
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Figure 2.5.: Different input processing approaches. The signals are respectively
the aggregate (orange) and appliance-level consumption (blue).
The bar evidences the different lengths of the output sequence for
the same input.
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Figure 2.6.: Example of a daily consumption of House 1 from UK-DALE.

2.3. Datasets

NILM has become a widely investigated field of research, especially during
recent years. The availability of numerous public datasets favored the research
towards applying deep learning strategies that rely on large datasets to be
effective. Public datasets promote fair comparisons because different works
evaluate their algorithms on the same setup.

This section will go into details for the two of the most used low-frequency
datasets during the last years (UK-DALE [24] and REFIT [25]) that will be
used to develop and evaluate the proposed strategies. Additionally, other two
of the most used public NILM datasets, REDD [26] and AMPds [27] are briefly
described.

The UK-DALE dataset [24], introduced in the UK Domestic Appliance-Level
Electricity study, is an open-access dataset comprising data from five residential
houses. It has been publicly available since 2015. The dataset captures the
active power consumption of individual appliances and the overall apparent
power demand of each house. These measurements were taken every six seconds
during a non-continuous period spanning from 2012 to 2015. In three of the
houses, the voltage and current of the entire household were down-sampled at
a rate of 1 Hz. Subsequently, the active power, apparent power, and root mean
square (RMS) voltage were computed. For House 1, a total of 655 days of
data are available, with individual recordings from nearly every appliance in
the house. This results in a comprehensive dataset with 54 separate channels.
In Figure 2.6 consumption signals of two days are reported for the House 1.
The authors of the study also reported the percentage of sub-metered energy

15
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for each house. House 1 accounts for 80% of the total aggregate consumption,
while House 5 contributes 79%. House 2 follows with 68%, and Houses 3 and 4
have 19% and 28%, respectively. Upon analyzing the daily energy consumption
patterns, it was found that certain appliances significantly contribute to the
overall consumption. These key contributors include the kettle, dishwasher,
home theater system, washer dryer, and fridge-freezer.

The REFIT Electrical Load Measurements dataset [25] has been publicly
available since 2017. This dataset encompasses data from 20 residential homes
over a continuous period of two years. Notably, all 20 homes were monitored
at the same sampling rate. The data collection spans from September 2013 to
July 2015. The dataset includes measurements of active power for both the
household aggregate and individual appliances within each home. These mea-
surements were recorded at 8-second intervals. During the monitoring period,
the households carried out their typical domestic activities. The number of
appliances installed in each house varies, ranging from a minimum of 15 to a
maximum of 49. Among the represented appliances, the most common ones
include the television, washing machine, microwave, kettle, dishwasher, and
fridge.

In the Reference Energy Disaggregation Data Set (REDD) [26] the data is
specifically geared toward the task of energy disaggregation, as declared by the
authors. REDD consists of whole-home and circuit/device specific electricity
consumption for a number of real houses over several months. For each moni-
tored house are recorded: the whole home electricity signal (current monitors
on both phases of power and a voltage monitor on one phase) recorded at a
high frequency (15kHz); up to 24 individual circuits in the home, each labeled
with its category of appliance or appliances, recorded at 0.5Hz; (3) up to 20
plug-level monitors in the home, recorded at 1Hz, with a focus on logging
electronics devices where multiple devices are grouped to a single circuit. The
Almanac of Minutely Power dataset (AMPds) [27] contains one year of data
that includes 11 electrical measurements at one minute intervals for 21 sub-
meters. AMPds also includes natural gas and water consumption data. The
authors specifically aimed their attention on the importance of having datasets
that capture long-term usage of appliances. The AMPds dataset is a record
of energy consumption of a single house using 21 sub-meters for an entire year
(from April 1, 2012 to March 31, 2013) at one minute read intervals. They
chose a one minute interval due to concerns over data communication network
saturation, but this comes at a cost of loss of fidelity (i.e. missing power mea-
surement spikes that could help identify loads more easily). The monitored
house is in the region of British Columbia. Figure 2.7 shows an example of
consumption signals for some appliances and the main.

16
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Figure 2.7.: Example of daily consumption from AMPds.

2.4. Related Works

Published NILM research has addressed classification and regression task equally.
For both appliance-state classification and appliance power profile reconstruc-
tion, in this work only methods that exploited low-frequency power signals are
considered.

Most of the published work have adopted a supervised learning strategy to
address the NILM problem.

2.4.1. Power Profile Reconstruction

Among the supervised approaches for power profile reconstruction, Kelly et
al. [28] firstly proposed three different architectures to estimate the power con-
sumption of appliances from sequences of aggregate samples. The architectures
were based on a de-noising Autoencoder (dAE), a Recurrent Neural Network
(RNN), and the so-called Regress Start Time, End Time & Power network

17
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composed of convolutional and fully connected layers. Similarly, in [29], two
Convolutional Neural Networks (CNN) were trained with Root Mean Squared
Error (RMSE) loss function. One network modeled the problem as sequence-
to-point and the other the sequence-to-sequence approach. Kaselimi et al. [30]
proposed an architecture with recurrent CNN units composed of two convolu-
tional multi-channel modules. A Dilated-Residual Network has been proposed
in [31] to prevent the vanishing gradient problem and training degradation, ap-
proaching the problem as sequence-to-sequence. Also recently, this architecture
has been improved and proposed by [32]. Langevin and colleagues [33] used a
Variational Auto-Encoder (VAE) to improve the disaggregation of power con-
sumption of multi-state appliances and generalization performance. In [34], a
method based on Generative Adversarial Networks (GANs) has been presented,
where a dAE was trained using an adversarial training strategy, and a recurrent
CNN units was employed as a discriminator. A Conditional-GAN approach was
proposed in [35], where the problem was modeled as a sequence-to-subsequence
estimation task. Self-Attentive-Energy-Disaggregation (SAED) from [36] has
been developed to incorporate the attention mechanism into neural networks
but mitigating the computational load. Ouzine et al. [37] proposed novel hy-
brid deep learning models providing the best disaggregation performances for
multi-target disaggregation compared to single models. They explored both
single- and multi-target models, with comparable performance. Diff NILM [38]
is a recent published approach that, starting from random Gaussian noise, iter-
atively reconstructs the target waveform via a sampler conditioned on the total
active power and encoded temporal features. An adaptive ensemble filtering
framework integrated with long- and short-term memory (LSTM) is proposed
for identifying flexible loads [39] such as heat pumps and electric vehicles. Re-
cently, in [40], a deep learning model based on an attention mechanism, tem-
poral pooling, residual connections, and transformers is proposed to effectively
capture appliance-specific energy usage.

2.4.2. Appliance State Classification

Supervised approaches for appliances’ states classification have been widely
used as well. In [41] a CNN with temporal pooling is used to aggregate features
of different time resolutions. Verma and colleagues [42] proposed a Multi-label
Restricted Boltzmann Machine (ML-RBM) due to its effectiveness in learning
high-level features and correlations. Singhal et al. [43] adopted Deep Dic-
tionary learning to overcome low-frequency sampling-related problems and be
more accurate with continuously varying appliances. Singh et al. [44] adopted a
Sparse Representation Classification (SRC) while reducing the number of data
collected for training. Massidda et al. [45] implemented temporal pooling to
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concatenate different time resolution information. A recurrent network struc-
ture is adopted by Cimen et al. [46] that proposed a Gated Recurrent Units
(GRUs) based approach, where features from the aggregate signal and spikes
are extracted before by using convolutional layers. Zhuo et al. [47] proposed a
convolutional-recurrent and random-forest (RF) based architecture to address
label correlation and class-imbalance problems. Dealing with the time-varying
nature of power signals, Verma et al. [48] proposed an encoder-decoder ar-
chitecture based on a Long Short-Term Memory network (LSTM) to model
complex dynamics. In [49], a CNN followed by three different fully connected
sub-networks was implemented for multi-label state and event type classifi-
cation. Deep Blind Compressed Sensing has been proposed by Singh et al.
[50], exploiting compressed information to reduce transmission rate to detect
devices’ states. In [51], authors proposed a multi-objective approach where
one model is used for many appliances, incorporating the appliance transfer
learning.

2.4.3. Multi-task approaches

Some works argued that combining the two tasks could lead to mutual benefits.
Thus, multi-task architectures have been proposed generally by using double-
branched architectures, to perform both classification and disaggregation, ex-
ploiting the correlation between the two tasks. Murray et al. [52] proposed two
architectures, one CNN-based and the other based on Gated-Recurrent Units
(GRU). Both networks were composed of two branches, one for classification
and the other for disaggregation. Piccialli and Sudoso [53] also proposed a
dual tasks architecture where the regression sub-network was improved with
an attention layer, and the regression output was combined with the related
classification prediction. Liu and colleagues [54] proposed the so-called SAM-
Net, a scale- and attention-experts based multi-task neural network to make
full use of the correlation between the tasks of the NILM.

2.5. Open Issues and Contributions

The research conducted so far has successfully determined the status of appli-
ances and recreated their power profiles. However, to implement these methods
in real-world situations, several obstacles need to be addressed.

These studies typically presume the availability of a substantial amount of
labeled data for network training. In practice, this is only possible if there
is a person who manually annotates the on and off times for each appliance
activation, specifically for state classification of appliances. For power profile
reconstruction, the alternative is to install sensors for each device, which can
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be impractical and costly.

Another common characteristic of supervised methods is the use of large,
multi-layered architectures to enhance feature capture and learning. Conse-
quently, these networks have millions of parameters that need to be trained,
requiring powerful platforms for training and deployment. Given their compu-
tational intensity, it is assumed that the computation will occur in the cloud.
This could potentially lead to privacy and latency issues, resulting in a less
than optimal service for the user.

Then, the contributions of this work are the following;:

1. Bridging the gap between Non-Intrusive Load Monitoring (NILM) meth-
ods and the user’s role, which is crucial in data annotation. So far, the
user’s active participation has been only slightly considered.

2. Incorporating the user into the development process of NILM algorithms
to take advantage of various annotations. This approach can lighten the
labeling effort required from the user.

3. Simplifying NILM algorithms and reducing storage requirements to op-
erate closer to the end-user. This way, at least the inference can be
performed on devices with limited resources.

The following chapter will describe the overall framework proposed in this
work to fill the research gaps, by introducing the deep learning methodologies
adopted to develop NILM strategies.
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Edge-Centric Non-Intrusive Load
Monitoring Framework

This chapter describes in detail the approach adopted in this work to address
the various open challenges that NILM approaches should deal with. For this
reason, as anticipated in Chapter 1, the core of the framework leverages tech-
niques associated with Deep Learning and the paradigms of Human-Centred
Computing and Edge Computing. By the use of well-known deep learning
strategies, this work aims to drive NILM towards Edge-Centric characteristics
and applications.

As depicted in Figure 3.1, Deep Learning and the two paradigms will be em-
bedded together in developing the NILM methodologies that will be presented
in the following sections. It is worth to clarify that not all the deep learning
techniques associated with the paradigms directly belong to them. The purpose
is to describe that by developing methods that follow such techniques, NILM
will be closer to meet paradigms’ principles. For example, transfer learning is
not by itself a technique related to a human-centric vision, but by using that
strategy linked to weak supervision it has been possible to better reduce the la-
beling effort in favor of the user and to approach the Human-Centred paradigm
closer. Next sections will describe firstly the deep neural network adopted to
develop the NILM methods presented in this thesis. Then, the deep learning
techniques related to the Human-Centred Computing and Edge Computing
paradigms adopted in this work will be exposed.

3.1. Convolutional Recurrent Neural Network

In literature, Deep Neural Networks (DNNs) have been structured in diverse
ways to perform a variety of tasks. For instance, tasks related to computer vi-
sion and images typically employ convolutional networks. Conversely, recurrent
structures are predominantly used with time series data.

In conventional Convolutional Neural Networks (CNNs), convolution and
pooling operations are performed independently for distinct regions of an im-
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Figure 3.1.: Overall approach adopted for Edge-Centric Non-Intrusive Load
Monitoring.

age. However, these methods overlook the contextual relationships that exist
among these regions. Recognizing these relationships can offer significant in-
sights into the structure of images.

Conversely, Recurrent Neural Networks (RNNs) are specifically engineered
to understand these contextual relationships within sequential data, courtesy
of their recurrent connections. A Gated Recurrent Unit (GRU) is a variant of
RNN that is employed for sequence-to-sequence challenges, such as language
translation or speech recognition.

In this thesis, a hybrid model known as the Convolutional Recurrent Neural
Network (CRNN) [55, 56] is utilized. This model is crafted to comprehend local
features extracted by the convolutional layers and global behaviors through the
recurrent component.

As illustrated in Figure 3.2, the Convolutional Recurrent Neural Network
(CRNN) consists of three primary components. The first component includes
several blocks, each containing a 1D or 2D convolutional layer with filters and
a kernel of a specific size, a batch normalization layer, an activation layer with
a Rectified Linear Unit (ReLU) function, and dropout for regularization.

Batch normalization [57] is generally used to expedite training by normal-
izing the input layer, which helps stabilize the network during training. The
ReLU function introduces non-linearity to the deep learning model, which helps
mitigate the vanishing gradient problem. Essentially, it processes the input and
outputs the value if positive; otherwise, it outputs zero. This function is widely
used in deep learning due to its effectiveness.

Dropout refers to the technique of randomly dropping out nodes in a neu-
ral network during training, which helps prevent over-fitting by introducing
random noise. Typically, a pooling layer is placed between the activation and
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Figure 3.2.: General CRNN architecture. For the sake of conciseness, only
one convolutional block is graphically reported. The example re-
gards the multi-label classification task, thus the sigmoid function
is adopted in the fully connected layer to produce the outputs.
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dropout layers to perform sub-sampling. However, in this work, the pooling
layer is not included in the convolutional block. This is because the input and
output windows have the same length, making sub-sampling unnecessary.

The convolutional block’s output is channeled into the network’s recurrent
section, which consists of a bidirectional layer of multiple Gated Recurrent
Units (GRUs) [58]. The inclusion of a bidirectional recurrent layer is motivated
by the need to incorporate both future and past timestamps. This allows the
sequence to be processed from start to end and vice versa, which is beneficial
for tasks where context is crucial for accurate prediction.

The network’s final section is a fully-connected layer, followed by a sigmoid
activation function used for binary classification. In the case of regression, a
linear function is used for activation. This architecture is particularly suited for
Non-Intrusive Load Monitoring (NILM), as the convolutional section extracts
features related to the appliance load signature, while the recurrent section
extracts temporal information related to activation and context.

CRNNSs have been previously applied to other application domains [59, 60,
61, 62]. Nonetheless, this architecture has never been employed before for
multi-label appliance classification, to the best of authors knowledge.

3.2. Weak Supervision

Weak Supervision refers to collection of learning strategies that exploits data
partially labeled for training supervised deep learning models.These strategies
vary depending on the nature of the missing information, as illustrated in
Figure 3.3.

Inexact Supervision refers to a type of supervision that provides information
for all the data but partial supervision is given, not fine-grained as expected.
The content is coarser compared to information used by supervised approaches.
Generally the coarse-grained label is assigned to a group of so-called "instances"
that share similar characteristics but are different. The group of instances is
called "bag". This type of learning is also called Multiple Instance Learning
(MIL), since the network learns from one information related to multiple in-
stances at the same time. Significant research effort is directed to properly
model the best relation between instance-level and bag-level labels. This type
of supervision is largely applied for sound event detection [63, 64, 61] and image
recognition [65, 66].

Another type of weak supervision is Inaccurate Supervision. In this case,
labels assigned to data points might be incorrect or contain errors, deviating
from the true ground truth. In other words, some labels may suffer from
errors. In this case, strategies to identify errors and try to correct them are
open research topics.

24



“output” — 2024/5/8 — 10:11 — page 25 — #b51
3.2. Weak Supervision

®

—_— ]

(a) Inexact Supervision.

0
.— 1 ._'
—0 ®—0 o—! —0

.—0 ._’0‘_.0

—_ () —0 ._'1
®—0

(b) Inaccurate Supervision.

.— ._'
—0 O— o— —0
—0 —_— ._'

—

(c¢) Incomplete Supervision.

Figure 3.3.: Weak Supervision. A binary classification example is represented.

Lastly, Incomplete Supervision refers to the availability of a small labeled
set and a larger set of unlabeled data. By itself the small labeled set is not
sufficient to be used in training. To solve this scenario, active learning [67] and
semi-supervised learning [68] are widely researched techniques. The difference
among them is the way in which missing labels are obtained. The first assumes
that there is an "oracle", generally a human expert, that can be queried to
get ground-truth labels for properly selected unlabeled instances. In contrast,
semi-supervised learning automatically exploits unlabeled data in addition to
labeled data to improve learning performance.
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Figure 3.4.: Schematic representation for transfer learning. The example refers
to the case when the task to perform is the same but data belong
to different domains. All the blocks that learnt common low-level
features about the task are transferred to the new network and
only the last layer is fine-tuned on the new domain data.

3.3. Transfer Learning

Transfer learning is a well-known technique and consists in leveraging feature
representations from a pre-trained model, without training a new model from
scratch when applied on a different scenario. A different scenario can be char-
acterized by new data domain or new tasks. A recent review on this technique
has been published by [69].

New tasks generally share some characteristics with previous tasks learnt
during training. One basic example can be a network trained to classify dogs’
images, then used to classify cats. The new data domain refers to evident
differences among data used for training and the data to be processed in the
operative phase. When moving to a new task or data domain, especially for
supervised trained networks, issues related to low performance have been re-
ported. It can happen that network weights over-fit on training data and the
network is not able to correctly process slightly different data. Another case
is when the network can discreetly generalize on new data data but they are
intrinsically different to the ones used in training. In NILM, domain differences
are very frequent and generally are related to household appliances, frequency
usage, appliances types and operational modes. Thus, to overcome this issue, a
common transfer learning technique called fine-tuning is required. Fine-tuning
consists in freezing the layers that learnt the low-level features (common among
different domains or different tasks) and re-training only the last layers of the
network to incorporate knowledge about new data or new tasks. In Figure 3.4,
fine-tuning is represented. Grey blocks refer to pre-trained layers on domain
A. Except for the last layer, the weights are fixed also to perform task B and
only the orange block is trained to fit with domain B data. The same holds for
different tasks.
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Figure 3.5.: Knowledge Distillation based on Teacher-Student strategy for a
model compression application. The £ function is a generic loss
function.

3.4. Knowledge Distillation

Knowledge Distillation (KD) has been firstly proposed by Hinton et al. [70],
inspired by mechanism that enables humans to quickly learn new complex con-
cepts when given only small training sets with the same or different categories.
The mechanism has been adopted to (i) transfer the knowledge from one do-
main to another and (ii) model compression. Most of the works applied this
principle by using the so-called Teacher-Student architecture. Generally, when
the objective is transferring the knowledge, the structure of Teacher and Stu-
dent networks is the same. For model compression, the Teacher consists in a
larger network with high number of parameters and the Student is a smaller
network. Sometimes, the type of the Student network is different [71]. Consider
the example in Figure 3.5 where the networks are both Multi-layer perceptron
(MLP) and in the Student network one hidden layer has been removed. The
input and output layers have the same dimension. The purpose is to distill the
knowledge from a Teacher model, ideally one performing close to optimally,
to the Student model with significantly fewer parameters. In this way, the
Student network tries to mimic the Teacher in performance. It can happen
that reducing the number of parameters favors a slight improvement of perfor-
mance, probably due to removal of redundant parameters. Large networks tend
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to over-fit, especially if the quantity of training data is not balanced with the
architecture. In the approach initially proposed by Hinton [70], the distillation
mechanism occurs through a loss term, where the Teacher outputs are used as
labels from which the Student can learn. Knowledge distillation is also used
to leverage previously acquired knowledge on the source data domain, when
data are not sufficient to learn a new target task. In this way, smaller Student
network can better fit with the available data, preventing under-fitting.

3.5. Continual Learning

Continual Learning, also known as Incremental Learning or Life-long Learning,
is a research branch that aims to move beyond the static knowledge paradigm
of deep learning. Its goal is to enable models to correctly process new instances,
new classes, or new tasks without suffering from catastrophic forgetting and
adapting to new real-world dynamics. Forgetting phenomenon occurs when a
model’s performance on old tasks degrades significantly after learning new in-
formation. This can happen when completely re-training the network to extend
the performed tasks. As clearly highlighted in [72], in a dynamic world, this
practice quickly becomes intractable for data streams or may only be available
temporarily due to storage constraints or privacy issues. This calls for sys-
tems that adapt continually and keep on learning over time. To address this
challenge, researchers have proposed various techniques falling into three main
categories: architectural or parameter isolation [73, 74, 75], rehearsal [76, 77],
and regularization [78, 79, 80] strategies.

Architectural strategies aim to solve catastrophic forgetting by designing neu-
ral network architectures that mitigate catastrophic forgetting. For instance,
Progress neural network (PNN) [73] and Expert Gate [74] assign one neural
network column to each task, ensuring that the parameters of previous tasks are
fixed. One approach that considers scalability issues is Packnet [75]. Inspired
by network pruning techniques, it optimizes large deep networks by freeing
up parameters for new tasks while maintaining performance and minimizing
storage overhead, sequentially "packing" multiple tasks into a single network.

Rehearsal techniques save exemplar data from previous tasks to combat for-
getting. Experience Replay [76] replays the exemplar set while learning the
current task and Gradient Episodic Memory [77] which computes gradients
in the exemplar set for each task, ensuring they align with the direction of
gradients from previous tasks.

Regularization strategies regularize the forgetting on previous tasks by loss.
Learning without Forgetting [78] uses distillation loss to maintain the output
distribution between old and new tasks. Elastic Weight Consolidation [79] and
Synaptic Intelligence [80] impose a higher penalty on precise parameters for
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previous tasks, causing the optimized trace to follow non-precise parameters to
optimize previous tasks and current tasks.

Continual learning is crucial for AT deep learning-based systems to adaptively
develop knowledge over their lifetime, and understanding these strategies helps
address the challenges posed by real-world dynamics. For more details, refer to
the recently published review by DeLange et al. [72], where a comprehensive
comparison of the common approaches is reported.
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User-centred NILM Methods
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The first and second contributions of this work, listed in
Chapter 2, will be deeply illustrated and discussed in this part
of the thesis. In Chapter 4, an introduction to the necessity
of reducing the annotation effort in NILM applications will
be presented. Accordingly, the approaches already proposed in
literature to address this problem are described.

To lighten the role of the users in labeling data, NILM has
been modeled as a Multiple Instance Learning and the Multiple
Instance Regression problem in Chapter 5 and Chapter 6. In
this way, a coarser label can be obtained by the user feedback
and exploited to train the network.

Once demonstrated the efficacy of this learning approach and
the possibility to improve the performance, a transfer learning
approach is proposed in Chapter 7 to pose the NILM framework
in a more real scenario, where large differences between train-
ing and target data are commonly evident. Then, merging the
weakly supervised transfer learning approach and an advanced
data selection strategy based on active learning, the quantity of
data to be annotated are further reduced in Chapter 8.

Overall results are discussed in Chapter 9. Adopting weak
supervision and then an efficient data selection based on weak
predictions, the annotation effort is consistently reduced by
progressively increasing the performance.
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Chapter 4.

Introduction

A drawback of strongly supervised methods, presented in Section 2.4, is that
they require large amounts of labeled data for training the networks. Especially
in practical scenarios, it is hard to obtain.

Alternative approaches have been developed to handle scarcity of annotated
data, as illustrated in Section 3.2. Specifically for NILM, semi-supervised ap-
proaches are able to exploit unlabeled data, thus they require fewer annotations
to achieve similar state-of-the-art performance [5, 81]. However, the number of
published papers on these semi-supervised methods is less than that of super-
vised methods.

SARAA [82] is a semi-supervised learning process for automated residen-
tial appliance annotation that produced classifiers with performance 14.8%
lower than the benchmark classifiers trained on the fully labeled ground truth
data. In a later work, Yang and colleagues [5] proposed a Teacher-Student
architecture based on Temporal Convolutional Networks (TCN) for multi-label
appliance classification to exploit unlabeled data and include them in the train-
ing process. In [81], Virtual Adversarial Training (VAT) was used for energy
disaggregation to train a sequence-to-point network. Learning was based on a
regularization term calculated as the average of local distributional smoothness
(LDS), and superior performance was obtained compared to fully supervised
learning.

As treated in Section 3.2, the lack of labels can be managed also by anno-
tating only the most significant available data. In this way, the selection of a
noteworthy set excludes the use of unlabeled data and strengthen the train-
ing with significant data. This strategy is known as the Active Learning (AL)
[83] that is a methodology designed to minimize the labeling effort required to
train Deep Learning (DL) algorithms. The process consists in selecting only a
subset of data for which the ground-truth is required while keeping an accept-
able level of performance. Unlabelled data samples belonging to the so-called
"query pool" are usually ranked according to informativeness, distance criteria,
or a combination of both. Labels are then requested only for the data samples
that are expected to contribute most significantly to the model’s training.
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In the active learning scenario, the figure of annotator is identified in a hu-
man expert. In NILM applications, the human can be the user. But it is very
unlikely that a user is skilled about the activation cycle of the dishwasher or the
washing machine to properly annotate it. Thus, another skilled figure should
be introduced or the user should be involved differently. AL for NILM has
not been extensively investigated yet - there have only been a few attempts
for event-based methods using high-frequency load measurements, based on:
k-Nearest Neighbours (k-NN) in [84], Support Vector Machines (SVM) in [85],
Random Forest with semi-supervised and AL combined in [86], and a DNN,
using high-frequency measurements and event detection in [87]. Only one ap-
proached the problem by using low-frequency measurements and supervised
model-based NILM in [88]. A supervised AL-based framework was proposed
[88] to find the trade-off between accuracy and number of queries to enlarge the
training set in an unseen domain and to improve the transferability of NILM
models. Although improving performance, this approach relied on a small
original training set with strong labels, necessitating sample-by-sample anno-
tations. It remains the only approach that uses low-frequency measurements
and supervised model-based NILM [88].

Both semi-supervision and active learning rely on ground-truth information,
at least for a subset of the dataset. However, none of the previous low-frequency
works that adopted these strategies have in-depth considered the role of the
end-user as an annotator, nor the implications of involving them in the an-
notation process. The study by Rossier et al. [20] briefly involves the user
in the process of turning appliances on and off as needed for system training
and label acquisition. This method, however, is notably labor-intensive and
time-consuming. Conversely, the study by Berges et al. [21] incorporates user
intervention in identifying appliance signatures to cut down on the costs of sen-
sor installation. This approach necessitates that the user possesses technical
skills. Thus, from a practical point of view, they still face issues related to
obtaining ground-truth information in real-world applications. A large effort
can discourage the user from participating, and, also, providing precise timing
information about appliance usage is more prone to errors.

In this part of the thesis, the first and second contributions of this work listed
in Section 2.5 will be deeply illustrated and discussed. A novel method based
on inexact supervision is proposed. NILM is modelled as a Multiple-Instance
Learning problem where labels are assigned to an ensemble of aggregate sam-
ples. The end-user can more easily provide this information. Firstly, the general
approach based on Multiple-Instance Learning is proven effective, comparing
it with two state-of-art works in Chapter 5. In Chapter 6, the method is
appropriately modeled to perfom appliance profile reconstruction. Then the
learning method is extended transfer learning scenario to exploit less labeled
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data, reproducing a more practical case in Chapter 7. Lastly, weak supervision
is embedded with active learning in Chapter 8. In this way, the role of end-
user as annotator will be lighten even more both from the point of view of (i)
ground-truth information requested and (ii) quantity of data to be annotated.
The weakly supervised active learning provides only the meaningful data to be

annotated.
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Chapter 5.

Multi-Label Appliance Classification
with Weakly Labeled Data

This chapter will provide a comprehensive overview of the method for multi-
label appliance classification, which has been modeled as a Multiple Instance
Learning (MIL) problem. The method has been published in [2].

The concepts of instances and bags have already been introduced in Sec-
tion 3.2. Thus, it is worth defining strong labels and specifically weak labels,
that will be used in this work to reduce the labeling effort. Strong labels are
labels assigned sample-by-sample, thus to each instance (sample) of the signal.
These labels are the commonly used in supervised approaches. On the other
hand, the ensemble of the instances is represented by the bag, to which it is
possible to assign the weak labels. Bag labels are noisy, coarse, and inexact,
thus they are commonly referred to as weak labels.

Both labels type will be employed in the learning process of a deep neural
network, trained to identify the state of multiple appliances sample-by-sample.
This solution has the dual consequence of improving generalization capability
compared to supervised approaches and reducing labeling costs. In principle,
appliance classification does not necessarily require active power signals of in-
dividual appliances for training since annotation can be performed manually.
Thus, sensors’ expenses are not mandatory and as a consequence, the meter-
ing infrastructure can be simplified. On the other hand, manual annotation
to provide strong labels requires a significant human effort that would not be
easy to afford. With weak labels, manual annotations are provided on a wide
temporal window, thus, it is sufficient to indicate if an appliance was active or
not within that segment by using only a single weak label. In this sense, the
method can also deal with the inexactness that may originate from mislabeling
by manual annotators.
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Figure 5.1.: Schematic representation NILM formulated as Multiple-Instance
Learning. KE: Kettle. MW: Microwave. DW: Dishwasher.

5.1. Proposed methodology

MIL is a different form of supervised learning and a particular variant of weak
supervision [89]. In MIL, learning examples are represented by bags composed
of multiple instances (e.g., feature vectors, raw samples), and labels are pro-
vided only at the bag level. During prediction, the objective can be to classify
bags, individual instances, or both [90]. MIL can be applied to single-label
classification tasks, where only one label is assigned to bags and instances,
or to multi-label classification tasks, where labels are multiple (multi-instance
multi-label learning, MIML) [91]. Labels assigned to bags depend on the labels
of individual instances inside them. In binary classification tasks, the standard
multiple instance assumption states that the necessary and sufficient condition
for a bag to be assigned a positive label is that one of its instances is positive,
but later works have proposed other alternatives [92]. The same criterion can
be easily extended to multi-class problems.

In the proposed method, instances are represented by the raw samples of the
aggregate signal y(t), and the related labels are represented by one-hot vectors
s(t) € REX1 defined as:

s(t) = [s1(2), 52(t), ..., sz (D)]F. (5.1)
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Figure 5.2.: An example of aggregate segment from house 2 of REFIT with the
related labels. The weak label is represented by the presence of
the tag with the appliance name, meaning that inside the window
the appliance is active at least one time. The dimension of the
coloured segment defines the ON- and OFF-time of the appliance
activation. KE, MW, FR, WM, and DW stand respectively for
Kettle, Microwave, Fridge, Washing Machine, Dishwasher.

A bag is a segment of y(t) with length L. Supposing that y(t) is divided into
disjointed segments, the j-th bag is represented by the following vector:

y; = (L), ...,y(jL + L —1)]"e R, (5.2)

The related label is again encoded as a one-hot vector w; € RE*1 As afore-
mentioned, w; depends on the instance labels inside it.

In Figure 5.1, a schematic example of instances and bag for NILM is reported.
For each sample of the aggregate signal, strong labels represent the state of
multiple appliances. The bag is the ensemble of these samples and the bag-
level label (weak label) depends on the strong labels related to instances. The
bag level, thus, contains information on the presence of one or more appliances
in a time window, while, at the instance level, this information is provided
at sample resolution. To clarify the concept, in Figure 5.2 an example of a
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bag of active power aggregate consumption is reported. Through weak labels
associated to the bag it is possible to know which appliances are active inside
the window. On the other hand, to localize the activation inside the window,
strong labels are necessary.

Denoting with S; = [s(jL),s(jL+1),...,s(jL+L—1)] € RE*L the set of
instance labels related to segment j, the relationship can be represented by a
pooling function b : RE*E — RE such that

Several pooling functions have been proposed in the literature, each having
different characteristics [60]. The pooling function used in this work will be
defined in the following section, along with the neural network architecture.

In this work, the objective is to identify if an appliance is active or not at
the sample level, thus the goal is to learn a function f : RF — RE*L such that:

A

S = f(y), (5-4)

where y is an unknown aggregate segment, and S contains the estimated
instance-level probabilities for each class. The bag index j has been omitted
for simplicity.

5.1.1. Neural Network Architecture

The function f(-) in Equation 5.4 is represented by a CRNN, already presented
in Section 3.1. The block scheme specifically related to this work is depicted
in Figure 5.3. For each segment y;, the network produces the related instance-
level estimate gj and the bag-level estimate W; for each appliance in interest.
Convolutional blocks are identified with H, with F filters and kernel of size K.,
while the recurrent part comprises U Gated Recurrent Units. The final layer
is denoted as instance layer, and it produces the instance-level estimate Sj.

After the instance layer, a pooling layer followed by a sigmoid activation
function produces the bag-level prediction #;. The proposed network, thus,
has both an instance-level output and a bag-level output. In this way, it is pos-
sible to conjugate MIL with the supervised learning strategy based on strong
labels. The pooling layer implements the pooling function b(-). As aforemen-
tioned, several alternatives exist for the pooling function. Based on the analysis
conducted in [60], the linear softmax is chosen since it achieved the highest lo-
calization performance. The linear softmax pooling function calculates the k-th
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Figure 5.3.: Block scheme of the proposed approach. The network takes as
input the aggregate power related to the j-th window and produces
two outputs, one from the instance layer (SJ) and one from the
bag layer (W;). The multiplication is related to clip smoothing.
T is length of input and output window, FCL stands for Fully

Connected Layer, K is number of appliances.

element of W; of the bag-level prediction as:

L(j+1)—1 A
PR i . (0
kI T LG )
S T sk

In this way, the larger instance-level predictions receive a larger weight [60].

(5.5)

5.1.2. Learning

Learning from bags raises important challenges that are unique to MIL formu-
lation [90]. As aforementioned, from a single weak label, multiple combinations
of instances exist that can produce the same bag label, thus it is expected that
a learning algorithm trained only on weakly annotated data achieves inferior
results than training on strongly annotated data. The availability of several
datasets for NILM with strong annotations [93] motivated us to train the CRNN
by using both weak and strong labels.

More in detail, denoting with 7., = {(y1,w1),..., (¥YMm,,, Wr,, )} the set of
training bags annotated with weak labels and with

Ts = {(y1,Ww1,81), ..., (¥nm., War,,Sas.)} the set of training bags annotated
with strong and weak labels, learning is performed on the training set 7 =
TwUTs.

The loss function is composed of the weighted sum of the binary cross-entropy
losses calculated on strong and weak labels:

L="Lo+ Ny, (5.6)

where £, and L,, are respectively the loss related to strongly and weakly labeled
data, and the weight A\ balances their contribution.
The two loss terms L, and £,, are the Binary Cross-Entropy (BCE) for each
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class and they are given by:

L
Z t)log(3k(t))+

w|~
MN*

L=
k:l t=1 (5'7)
(1= sk(t)) log(1 — 8 ()],
1 K
Z Wi log wk (1 — wk) log(l — ’(f}k)] y (5.8)

K=
where the segment index j has been omitted for simplicity of notation. The
rationale behind the use of BCE loss for multi-label multi-class problems is
that the task is reduced to multiple binary classification problems, one for each
appliance. Individual BCE loss terms are calculated for each output neuron,
then they are summed to obtain the final loss. Training has been performed
by using the Adam algorithm [94].

5.1.3. Post-Processing

The bag-level and instance-level outputs of the CRNN are class probabilities
estimates in the range [0,1]. These values are then transformed into 0 or 1 by
using a threshold to determine whether an appliance is active or not.

This procedure, however, is prone to producing outputs where few isolated
instances are 0 or 1. Median filter is one of the popular solutions to reduce such
spurious values. The median filter operates by calculating the median value
within a segment of a certain length and replacing contiguous instances with a
duration shorter than half the segment length with the median value.

Additionally to median filtering, here a recent technique presented in [95]
and named clip smoothing is explored. Clip smoothing operates before thres-
holding and consists in multiplying the instance-level prediction with the bag-
level prediction (Figure 5.3). The rationale of clip smoothing is that instance
and bag level predictions should be coherent: if a bag prediction is close to 0,
instance-level predictions should be all close to 0, and vice versa. Multiplying
the two predictions enforces this relationship. An advantage over median fil-
tering is that clip smoothing is a learnable procedure intrinsic to the network.
Note that the use of clip smoothing is only possible when the network outputs
weak and strong predictions, thus it represents an additional advantage over
strongly supervised methods.
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Table 5.1.: UK-DALE dataset characteristics. Numbers are in thousands.

Strongly and weakly annotated set Weakly annotated set Aversge power in &
Training (k) Validation (k) Test (k) Training (k) activation (W)
Appliances Strong Weak | Strong Weak | Strong Weak Weak
Kettle 996.6  31.4 196.3 6.9 91.4 2.2 11.7 1996
Microwave 849.7 31.0 157.2 7.0 83.8 2.4 11.9 1107
Fridge 12219 4.8 709.4 2.9 130.3 0.6 31.2 91
‘Washing Machine | 837.7 1.2 881.4 1.2 102.5 0.2 30.9 487
Dishwasher 554.5 0.6 790.1 0.9 87.5 0.2 31.3 723
Nr. of bags 41.720 10.428 3.271 58.213

Table 5.2.: REFIT dataset characteristics

. Numbers are in thousands.

) ‘Strongly and ?vealfly annotated set Weakly gzl}lotated set Average power in a
Training (k) Validation (k) Test (k) Training (k) activation (W)

Appliances Strong Weak | Strong Weak | Strong Weak Weak

Kettle 2917.3  62.2 619.2 15.5 623.9 209 3.0 2048
Microwave 1858 40 455.6 9.9 467.7 12.0 20.0 893

Fridge 6030 10 1635.5 3.0 1396.1 1.4 55.0 90

Washing Machine | 2402.2 6.1 2062.9 5.7 228.3 0.5 55.0 513

Dishwasher 2263.2 2.9 2822.5 4.4 472.0 0.5 53.0 881
Nr. of bags 97.385 24.297 22.425 102.078

5.2. Experimental setup

The proposed method has been implemented in Python using Tensorflow 2.4
and Keras. The source code is available here!.

5.2.1. Dataset

The experiments have been conducted on two datasets, UK-DALE [24], and
REFIT [25], already described in Section 2.3. The monitored appliances have
been selected based on the recent literature [96, 97, 35], and they are the
following: Kettle, Microwave, Fridge, Washing Machine, and Dishwasher. Each
dataset has been processed to create two sets of bags, one for UK-DALE and
one for REFIT, then used for training and testing the proposed method. The
complete procedure is described in Appendix 1.

An example of aggregate segment related to house 2 of the REFIT dataset is
shown in Figure 5.2. Aggregate data were normalized with mean and standard
deviation values computed from the training set.

The aggregate active power readings are down-sampled from 1s to 65, and
the mains are aligned to the appliance readings using NILM-TK [98]. All the
houses were included, but only the Kettle and the Fridge were considered for
houses 3 and 4. For training and validation, data from houses 1, 3, 4, and 5
are used, while house 2 was kept out for testing on unseen data.

For REFIT, the same houses reported in [97] are used, a part from house 20
since it contains only two Kettle activations. Houses 4, 9, and 15 have been
used to test on unseen data, while the remaining for training. The training,

'https://github.com/GiuTan/Weak-NILM
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validation, and test set characteristics are reported in Table 5.1 and Table 5.2:
“Strongly and weakly annotated set” refers to bags with both strong and weak
labels, while “Weakly annotated set” refers to bags annotated only with weak
labels. For each appliance, the table reports the number of strong labels, i.e.,
the total number of samples, and the number of weak annotations, i.e., the
total number of bags where it is present.

5.2.2. Benchmark Methods

The proposed method has been compared to two benchmark approaches re-
cently published in the literature. The first is the LSTM network presented
in [28], that has been already used as benchmark method for classification in
[45, 5]. As in [5], to perform multi-label classification, the last layer of the
network has been replaced with a fully-connected layer composed of K = 5
neurons, that is the number of monitored appliances, followed by a sigmoid
activation function. The network is trained only on strongly labeled data using
the loss defined in Equation 5.7. The second benchmark method is the Semi-
Supervised Multi-Label TCN (SSML-TCN) proposed in [5] and the network
has been implemented and trained with the hyperparameters reported in the
original work. The SSML-TCN network has been trained using both strongly
and weakly labeled data, with the latter used as unlabeled data. The final loss
function is the sum of the cross-entropy loss defined in Equation 5.7 and the
consistency loss computed on the student and teacher predictions as in [5]. The
network used to produce the inferences is the student one. More details about
benchmark approaches’ architectures and peculiarities have been reported in
Appendix 2.

The proposed solution has been evaluated also against a CRNN trained only
on strongly annotated data as the LSTM network. Referring to Figure 5.3,
this means that this network outputs only instance-level predictions, and it
does not comprise the linear softmax pooling layer and clip smoothing. This
network will be denoted as S-CRNN in the following.

5.2.3. Evaluation Metrics

The performance of the algorithm has been assessed at the instance level, while
the bag-level output has not been considered. The metrics used in the evalu-
ation are the Fij-score (F}) and the Total Energy Correctly Assigned (TECA)
[26]. The Fj-score is used to evaluate the model prediction ability, balancing
between the presence of accurate classification and false activations. Fj-score
for appliance k is calculated as:
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*) 2.7pP™
boo2.rp® 4 pp®) 4 pN R

(5.9)

where TP is the number instances correctly assigned to appliance k (true
positives), FPW®) is the number instances incorrectly assigned to appliance k
(false positives), and FN (%) is the number instances incorrectly assigned to
other appliances (false negatives). The average performance across appliances
is calculated by using the micro-averaged Fj-score:

23, TPW
S (2:7P® 1+ FPE) 4 PN®)

Fj-micro = (5.10)

TECA has been introduced in [26] to evaluate the energy disaggregation
error and is defined as:

S Sl — )
THeA =1 250l

where & (t) is the estimated power of appliance k at the time instant ¢, Zy(¢)

(5.11)

the related ground-truth power, and (t) = >, #x(t). The estimated power
2 (t) is reconstructed by multiplying the estimated states §x(¢) and the average
power in an activation of appliance k, while Z(t) by considering the ground-
truth states s (t). Average powers are reported in Table 5.1 and Table 5.2
respectively for the UK-DALE and REFIT datasets.

Differently from Fj-micro, TECA is more influenced by high power appli-
ances, thus, it may result in high values even when low-power appliances are
classified poorly [26].

5.2.4. Experimental procedure

Referring to the strongly and weakly annotated training sets reported in Ta-
ble 5.1 and Table 5.2, three experiments are performed in different training
conditions:

1. Experiment 1: all the weakly annotated training bags are used for train-
ing, while the number of strongly annotated bags is varied from 0% to
100% (step 20%);

2. Experiment 2: the amount of strongly annotated bags is fixed to 20%,
while the number of weakly annotated bags is varied from 0% to 100%
% (step 20%);

3. Experiment 3: mixed strongly labeled data of UK-DALE and weakly
labeled data of REFIT. The objective is to evaluate if it improves the
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performance on the respective test sets compared to training only on
strongly labeled data.

The objective of the first two experiments is to evaluate how weakly labeled
data influence performance, particularly if they indeed provide an improvement
when the amount of strongly labeled data is modest.

In Experiment 1, the amount of strongly labeled data is progressively de-
creased, and it is evaluated when the contribution of weakly labeled data is
significant. In Experiment 2, a certain amount of strongly labeled data for
which weakly labeled data provide a performance improvement is considered,
and then the amount of weakly labeled data is varied. In this way, the con-
tribution of which amount of weakly labeled data provides a performance im-
provement can be evaluated. Note that in the first experiment, 0% of strongly
annotated training data means that training is performed by using only weak
supervision. Experiment 3 is the case where it is possible to acquire additional
data on a target environment, but annotation is performed only with weak la-
bels. For example, when end users perform annotation as a result of a prompt
to label an aggregate power segment in which unknown loads are present. In
this case, users annotate the entire segment with a weak label, thus indicating
only whether an appliance was active or not. In this situation, the aim is to
evaluate if mixing this additional data with strongly annotated data from a
public dataset provides some benefits. To perform this evaluation, weakly la-
beled data and test data from REFIT have been resampled to 6 s as UK-DALE
strongly labeled data.

A tuning procedure has been performed for each training condition to find
the values of hyperparameters that achieve the highest performance on the
validation set. The procedure has been conducted separately for the proposed
method and the S-CRNN network. In this way, the possibility that the per-
formance difference is due to a wrong or biased choice of the values of the
hyperparameters is reduced.

Table 5.3.: Training hyperparameters not subject to tuning.

Parameters Value

. 64 (UK-DALE
Batch size 128( (REFIT) )
Learning rate 0.002
Training epochs 1000
Patience 15
Stride 1
Padding Same
Weights initializer | Glorot Uniform
Bias initializer Zeros
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Table 5.4.: Hyperband parameters. "Max epochs" refers to epochs for the Hy-
perband algorithm thus the number differs from the epochs of the
learning process. U is the number of GRUs, H is the number of con-
volutional blocks, K, is the kernel dimension and p is the dropout

probability.

Parameters | [Range], Step Distribution
Max epochs | 20 -

Factor 2 -

U [8, 16, 32, 64, 128, 256] | Random choice
H [2, 6], 1 Uniform

K. 3, 7], 2 Uniform

D [0.1, 0.5], 0.1 Uniform

Hyperband [99] has been adopted to improve the search of CRNN hyper-
parameters. This is a method that uses random sampling and early-stopping
principles. It begins by randomly selecting many hyperparameter settings and
giving each a small amount of resources. It then gradually removes the configu-
rations that perform the worst, redistributing their resources to the remaining
configurations. This elimination process is done in stages until only the best
configurations are left. Hyperband has been used for searching the following
hyperparameters: number of convolutional layers (H), number of units in the
recurrent layers (U), the dropout rate (p), and kernel size (K,.). The number
of filters F' in each convolutional layer increases doubling layer by layer with
an initial value of 32. Table 5.3 reports the values of the hyperparameters not
subject to tuning with Hyperband, Table 5.4 the hyperparameters of Hyper-
band, and Table 5.5 the values determined after tuning for the different training
conditions. The value of the weight A, that balances the strong and weak loss
contributions, has been initially set to 1. Then, monitoring the values assumed
by the two losses L5 and L,,, the final value of X is selected to make them of
the same order of magnitude.

5.2.5. Post-processing

Whether to apply median filtering, clip smoothing, or none of the two is selected
by evaluating the results obtained on the validation set. Median filtering did
not improve the classification performance, so it was not used.

The threshold for obtaining the final classification values from output prob-
abilities has been selected on the validation set, based on the value that maxi-
mizes the Fj-score.
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Table 5.5.: Hyperparameters determined after tuning.

Dataset % Weak | % Strong | H | U K. |p
0 o0 |3 |6t |5 |01
UKDALE 0 20-100 3 | 64 5 0.1
20-100 20 3 | 64 5 0.1
20 4 | 256 | 5 0.3
40 3 | 64 3 0.2
0 60 3 128 | 3 0.2
80 4 128 | 7 0.3
REFTT 100 5 | 64 3 0.2
20, 40 4 256 | 5 0.3
60, 80 20 3 64 3 0.1
100 3 | 64 3 0.3
40 4 64 5 0.1
100 60 4 64 3 0.2
80, 100 4 64 5 0.1
0 3 | 32 3 0.1

Table 5.6.: Maximum model size, training and test time of all the evaluated

methods.
Method Max Model Size | Training Time | Testing Time
LSTM 4.97 MB 172 ms/step 3.6 ms
SSML-TCN 6.18 MB 143 ms/step 41ms
S-CRNN 4MB 215 ms/step 0.3ms
Proposed 1.39MB 214 ms/step 0.3ms

5.2.6. Complexity Details

As a first note, Table 5.6 reports the maximum model size, and the training
and inference times for all the evaluated methods. Note that the network of the
proposed approach is the smallest of the evaluated methods and, along with
S-CRNN, requires the least amount of time for testing. On the other hand,
it requires more time for training, as S-CRNN, compared to other methods.
Training and test times have been obtained on a NVIDIA DGX Station A100
[100]. For training time and model size, there have been reported the maximum
values related to the longest training, both for UK-DALE and REFIT.
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Table 5.7.: Results obtained on the UK-DALE and REFIT datasets by using
weakly labeled data only, in terms of Fj-score (Section 5.3).
0% Strong, 100% Weak
KE MW FR WM DW | Fi-micro TECA
UKDALE 0.89 0.76 0.29 0.36 0.39 0.52 0.57

REFIT 0.21 0.17 0.01 0.09 0.17 0.11 0.06
0.2 |
0.1 N
oo b L1

KE MW FR WM DW  Fi-micro TECA
% Strong: 1820%0040% " 60% #80% 10100% |

Figure 5.4.: Difference between Fj-scores of each appliance, Fj-micro, and
TECA of the proposed method and S-CRNN for UK-DALE for
the different percentages of strongly labeled data (Section 5.3).

5.3. Results experiment 1: Fixed amount of weakly
labeled data

5.3.1. UK-DALE

The results related to this experiment are reported in Table 5.7, Table 5.8, and
Figure 5.4. Table 5.7 shows the results obtained by using only weak labels
for training. Observing the results, Kettle and Microwave Fj-scores are above
0.75, with the former equal to 0.89. On the contrary, Fridge, Washing Machine,
and Dishwasher scores are below 0.5, meaning that the absence of strong labels
impacts their results more than other appliances.

Table 5.8 reports the results obtained when strongly labeled data are used
concurrently with weak labels. In terms of Fj-micro, apart when 100% of
strongly labeled data is used, the proposed method provides better perfor-
mance with respect to benchmark approaches. In terms of TECA, the S-
CRNN achieves the overall greatest value, but on average the proposed method
achieves superior performance. In particular with 20%, 40% and 60% of strongly
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Table 5.8.: Results obtained on the UK-DALE dataset related to Experiment
1. Best scores for each strong percentage are highlighted in bold.
Best score among all the percentage are underlined (Section 5.3).

% Strong Method KE MW FR WM DW | Fj-micro TECA
LSTM [28] 095 0.74 035 044 0.69 0.61 0.79

2 SSML-TCN [5] | 0.82 0.70 0.16 0.39 0.60 0.46 0.60
S-CRNN 0.98 0.67 0.42 0.80 0.81 0.72 0.86

Proposed 0.99 0.92 0.58 0.87 0.74 0.81 0.91

LSTM [28] 0.99 093 059 059 0.88 0.77 0.89

40 SSML-TCN [5] | 0.92 0.86 0.37 0.62 0.48 0.64 0.77
S-CRNN 0.99 095 0.70 0.88 0.84 0.86 0.94

Proposed 098 0.96 0.69 0.87 0.88 0.87 0.94

LSTM [28] 0.99 093 053 0.69 0.84 0.76 0.89

60 SSML-TCN [5] | 0.95 0.87 0.39 0.70 0.64 0.68 0.82
S-CRNN 0.99 0.96 0.67 0.90 0.71 0.84 0.93

Proposed 0.99 0.96 0.70 0.87 0.83 0.86 0.94

LSTM [28] 0.99 095 058 0.68 0.69 0.75 0.88

80 SSML-TCN [5] | 0.96 0.84 041 0.76 0.60 0.68 0.83
S-CRNN 0.99 0.96 0.70 0.83 0.89 0.86 0.94

Proposed 098 095 0.70 0.89 0.87 0.87 0.93

LSTM [28] 0.99 095 065 078 0.75 0.80 0.91

100 SSML-TCN [5] | 0.97 0.85 043 0.76 0.61 0.71 0.84
S-CRNN 0.99 0.96 0.70 0.89 0.91 0.88 0.95

Proposed 098 0.96 0.74 0.89 0.86 0.88 0.93

LSTM [28] 098 090 054 064 0.77 0.74 0.87

AVG SSML-TCN [5] | 0.92 0.82 0.35 0.65 0.59 0.63 0.77
’ S-CRNN 0.99 090 064 086 0.83 0.83 0.92
Proposed 0.98 0.95 0.68 0.88 0.84 0.86 0.93
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Figure 5.5.: Training loss and validation loss and Fj-score for the experiment
related to 40% strong data and 100% weak data for UK-DALE.
Vertical bar indicates the early stopping epoch.

labeled data, i.e., when the number of strong labels is modest, the proposed
method shows more accuracy. Considering the average across the different per-
centages of strongly labeled data (last line of Table 5.8), the proposed method
significantly improves the performance of all the appliances, with the only ex-
ception of Kettle. On average, the F;-micro improvements compared to LSTM,
SSML-TCN, and S-CRNN are respectively 16.22%, 36.51%, and 3.61%. Among
benchmark methods, S-CRNN performs more accurately compared to LSTM
and SSML-TCN.

Figure 5.4 shows the difference between the Fi-scores of each appliance,
the Fi-micro, and the TECA of the proposed method and S-CRNN for the
different percentages of strongly labeled data. S-CRNN has been chosen among
benchmark methods since it is the best performing among them. Moreover, it
allows highlighting the contribution of weak labels since the architecture is
very similar to the one of the proposed method. It is evident that the greatest
improvement occurs when the percentage of strongly labeled data is 20%, i.e.,
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when the difference between the amount of strongly and weakly labeled data is
the largest, meaning that in this case weak labels influence more the learning
phase. Apart from the Dishwasher, the improvement is consistent for all the
appliances.

Above 20%, the improvement of the proposed method reduces, but it remains
significant up to 100%. In this case, the Fj-micros are comparable, meaning
that the contribution of weak labels is less important. Observing the perfor-
mance of the individual appliances, weak labels influence to a lesser extent the
performance of Kettle and Microwave.

The appliances that exhibit a less consistent behavior with weak labels are
Dishwasher and Washing Machine. Regarding the former, with 40% and 60%
of strongly labeled data, the proposed method improves the performance with
respect to full supervision, while with 20%, 80%, and 100% the performance is
lower. The same holds for Washing Machine where the performance improves
with 20% and 80% of strongly labeled data, while in the other cases weak su-
pervision does not improve the classification ability. A possible explanation
for this behavior can be related to the shape of the activations of these appli-
ances, which are more complex compared to the others, as also reported in the
previous literature [97].

Observing the results of the individual appliances, for Kettle and Microwave
weak labels allow to use a less amount of strong labels for obtaining the same
Fi-score. For the Fridge, on the other hand, weak labels provide the overall
best performance when 100% of strongly labeled data is used.

Figure 5.5 shows an example of the loss trend for training, validation, and
test, the Fi-micro trend during training, and the final value on the test set
computed by using the best model. Early stopping occurs on the 46th epoch.

5.3.2. REFIT

REFIT is a more challenging dataset than UK-DALE as it is significantly
noisier [101]. Indeed, the results shown in Table 5.7 obtained by using only
weakly labeled data are lower compared to the ones obtained with UK-DALE
leading to the conclusion that weakly labeled data only are not sufficient to
achieve satisfactory performance.

Table 5.9 reports the results with a fixed amount of weakly labeled data and
varying percentages of strongly labeled data. Observing the Fi-micro for the
different percentages and the average value, the proposed method achieves su-
perior performance compared to benchmark methods, with the only exception
of 60% of strongly labeled data where S-CRNN performs the same. The best
Fi-micro is reached with the proposed method when the percentage of strongly
labeled data is 40%. In terms of TECA, on average, S-CRNN and the proposed
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Table 5.9.: Results obtained on the REFIT dataset related to Experiment 1.
Best scores for each strong percentage are highlighted in bold. Best
score among all the percentage are underlined (Section 5.3).

% Strong Method KE MW FR WM DW | Fj-micro TECA
LSTM [28] 0.86 0.53 0.23 046 0.67 0.51 0.74

2 SSML-TCN [5] | 0.72 0.71 0.12 059 0.51 0.42 0.58
S-CRNN 0.68 0.40 0.29 0.68 0.68 0.44 0.65

Proposed 0.68 0.80 0.50 0.54 0.58 0.59 0.65

LSTM [28] 0.84 0.77 025 0.27 0.70 0.54 0.76

40 SSML-TCN [5] | 0.81 0.71 0.08 0.52 047 0.39 0.65
S-CRNN 0.85 0.83 0.28 0.72 0.76 0.62 0.81

Proposed 0.74 0.80 0.45 0.59 0.85 0.63 0.76

LSTM [28] 0.67 0.80 0.31 0.48 0.46 0.51 0.71

60 SSML-TCN [5] | 0.74 0.70 0.10 0.61 0.48 0.36 0.63
S-CRNN 0.81 0.86 035 0.72 0.63 0.62 0.79

Proposed 0.78 0.82 0.40 054 0.82 0.62 0.77

LSTM [28] 0.70 0.77 0.43 0.59 0.69 0.58 0.73

80 SSML-TCN [5] | 0.80 0.74 0.08 0.63 0.55 0.43 0.70
S-CRNN 0.76 0.75 0.32 0.76 0.81 0.60 0.77

Proposed 0.58 0.79 041 0.76 0.89 0.61 0.74

LSTM [28] 0.57 0.80 0.43 0.53 0.31 0.51 0.67

100 SSML-TCN [5] | 0.77 0.73 0.11 0.60 0.52 0.42 0.68
S-CRNN 0.64 0.80 0.33 0.65 0.65 0.55 0.71

Proposed 0.73 0.84 036 0.77 0.78 0.62 0.78

LSTM |[28] 0.73 0.73 033 047 0.57 0.53 0.72

AVG SSML-TCN [5] | 0.77 0.72 0.10 059 0.51 0.40 0.65
’ S-CRNN 0.75 0.73 031 0.71 0.71 0.57 0.75
Proposed 0.70 0.81 0.42 0.64 0.78 0.61 0.74

method achieve similar results, with the former obtaining a value 0.01 greater.
The performance of the appliances with the highest average power consump-
tion in an activation and the composition of the test set influence the behavior
for the different percentages of strongly labeled data. As shown in Table 5.2,
the Kettle is the appliance with the highest power consumption, and with 20%,
40%, and 60% of strongly labeled data, the method with the greatest Fj-score
on the Kettle also achieves the highest TECA. When the percentage of strongly
labeled data is 80% and 100%, SSML-TCN achieves the highest Fij-score, but
the overall Fi-micro is significantly lower than the proposed method and S-
CRNN, and the value of TECA is consequently lower. However, it is worth
remarking that the proposed method achieves an average TECA close to the
one of the S-CRNN, while providing a higher Fj-micro..

Regarding individual appliances, in terms of average F}-scores, the proposed
method achieves the greatest performance for Microwave, Fridge, and Dish-
washer, while SSML-TCN for Kettle and S-CRNN for Washing Machine. The
best Fj-scores across all the percentages (underlined results in Table 5.9) are
obtained by using the proposed method for Washing Machine, Dishwasher, and
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Figure 5.6.: Difference between Fj-scores of each appliance, Fj-micro, and
TECA of the proposed method and S-CRNN for REFIT for the
different percentages of strongly labeled data (Section 5.3).

Fridge, while with LSTM for the Kettle and S-CRNN for the Microwave.

Figure 5.6 shows the difference between the Fi-scores of each appliance, the
Fi-micro, and the TECA of the proposed method and S-CRNN. The focus is
on S-CRNN as with UK-DALE for the same reasons, i.e., since it is the best
performing among benchmark methods, and it allows to highlight the contri-
butions of weak labels. Microwave, Fridge and Dishwasher are the appliances
that benefit most from weak labels during training, in particular when strong
data are only 20%. On the other hand, Kettle and Washing Machine exhibit
the greatest benefit from weak labels when the amount of strongly labeled data
is large.

5.4. Results experiment 2: Fixed amount of
strongly labeled data

As aforementioned, in this experiment the amount of strongly labeled data is
fixed and the amount of weakly labeled data varies. Both for UK-DALE and
REFIT, the percentage of strongly labeled data is fixed to 20%, the lowest value
considered in Experiment 1. In this experiment, the objective is to evaluate to
what extent weakly labeled data influence the performance when the amount
of strongly labeled data is modest. For each percentage, only the proposed
method and SSML-TCN are trained. The other benchmark methods do not use
weakly labeled data for training thus they are excluded from this experiment.
For the sake of conciseness, in Table 5.10 and Table 5.11, only the results of
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Table 5.10.: Results obtained on the UK-DALE dataset related to Experiment
2. The best results obtained using the least amount of weakly
labeled data are highlighted in bold. (Section 5.4)

% Weak Method KE MW FR WM DW | Fj-micro TECA
0 S-CRNN 098 067 042 080 0.81 0.72 0.86
20 SSML-TCN | 0.85 0.71 0.19 0.46 0.65 0.54 0.68
Proposed 098 0.93 0.58 0.79 0.84 0.81 0.91
40 SSML-TCN | 0.94 0.64 0.21 0.54 0.66 0.56 0.76
Proposed 0.99 092 051 0.81 0.69 0.77 0.89
60 SSML-TCN | 0.89 0.66 0.21 0.51 0.68 0.56 0.73
Proposed 099 092 0.58 082 0.82 0.81 0.91
80 SSML-TCN | 0.83 0.73 0.18 0.39 0.63 0.50 0.63
Proposed 098 092 053 083 0.81 0.80 0.91
100 SSML-TCN | 0.82 0.70 0.16 0.39 0.60 0.46 0.60
Proposed 0.99 092 0.58 0.87 0.74 0.81 0.91
AVG. SSML-TCN | 0.87 0.69 0.19 0.46 0.64 0.52 0.68
Proposed 0.99 0.92 0.56 0.82 0.78 0.80 0.91

the proposed method, SSML-TCN, and S-CRNN are reported since it is the
method that achieved the best average performance in Experiment 1.

5.4.1. UK-DALE

Table 5.10 presents the results related to the UK-DALE dataset. Observing the
results, in terms of Fj-micro, introducing 20% of weak labels allows achieving
the highest performance. Indeed, introducing more weak data does not provide
significant improvements in that sense. In terms of TECA, the greatest value is
obtained by using 20%, 60%, 80%, and 100% of weakly labeled data. Compared
to S-CRNN and SSML-TCN, the proposed method always achieves greater Fi-
micro and TECA.

Regarding individual appliances, the greatest average Fi-micro is always
achieved by using the proposed method. The highest Fj-scores for most appli-
ances are obtained with the lower percentages of weak data (20% and 40%).
The Fi-score of Kettle and Microwave is almost independent of the number of
weak labels since it changes only by 0.01. Instead, the Fj-score of the Washing
Machine improves constantly with the increase of weakly labeled data used.
The Dishwasher exhibits a significant improvement by using 20% of weak data,
then the behavior is less consistent. A possible explanation is that the per-
formance is more influenced by the composition of the weak dataset and the
related unbalance of the classes.

In fact, the Dishwasher is significantly unbalanced considering weak annota-
tions with a presence of 0.89%, with respect to the total presences of all the
appliances in the dataset when weakly annotated data considered are 40%. In
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Table 5.11.: Results obtained on the REFIT dataset related to Experiment 2.
The best results obtained using the least amount of weakly labeled
data are highlighted in bold (Section 5.4).

% Weak Method KE MW FR WM DW | Fj-micro TECA
0 S-CRNN 0.68 040 0.29 0.68 0.68 0.44 0.65
20 SSML-TCN | 0.74 0.74 0.06 0.54 0.32 0.36 0.54

Proposed 0.72 0.70 038 0.77 0.69 0.58 0.73

40 SSML-TCN | 0.73 0.72 0.10 0.60 0.30 0.37 0.49
Proposed 0.66 0.85 0.36 0.77 0.66 0.59 0.73

60 SSML-TCN | 0.72 0.69 0.09 0.53 0.30 0.34 0.49
Proposed 0.67 0.74 028 0.68 0.74 0.54 0.70

80 SSML-TCN | 0.72 0.71 0.07 0.49 045 0.37 0.58
Proposed 0.60 0.81 039 0.69 0.70 0.58 0.68

100 SSML-TCN | 0.72 0.71 0.12 0.59 0.51 0.42 0.58
Proposed 0.68 0.80 0.50 0.54 0.58 0.59 0.65

AVG. SSML-TCN | 0.73 0.71 0.09 0.55 0.38 0.37 0.54
Proposed 0.67 0.78 0.38 0.69 0.67 0.58 0.70

fact, for 20% the presence is about 1.4%, for 60% is 3.4%, for 80% is 9.6% and
for 100% is 16.9%.

5.4.2. REFIT

Table 5.11 reports the results related to the REFIT dataset. Generally, the Fi-
micro related to the proposed method for different percentages of weakly labeled
data does not change significantly, apart for 60%. Regardless the percentage,
the proposed method always outperforms SSML-TCN and S-CRNN in terms of
Fi-micro and the highest value is obtained for 40% of weakly labeled data. In
terms of TECA, the proposed method outperforms both S-CRNN and SSML-
TCN, achieving the overall greatest value with 20% and 40% of weakly labeled
data.

Regarding individual appliances, on average, the highest F-scores are achieved
by using the proposed method with the only exception of the Kettle. For the
different weakly labeled data percentages, the Fj-scores behaves differently de-
pending on the appliance, but generally highest scores occur for lower percent-
ages (20%-40%). This applies to the Kettle, Washing Machine and Microwave,
while for the Dishwasher the best Fj-score is obtained when the percentage is
60% and for the Fridge when it is 100%. For the Microwave, the Fj-score is
always higher than the one of the S-CRNN method. SSML-TCN achieves the
highest Fj-score for the Kettle. However, the proposed method classifies the
Kettle better than the S-CRNN when the weak data are modest (20%).
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Table 5.12.: Results obtained on the UK-DALE test set with mixed training
set. Best scores are reported in bold (Section 5.5).

KE MW FR WM DW Fi-micro TECA

S-CRNN | 0.98 0.67 0.42 0.80 0.81 0.72 0.86

Proposed | gc 75 034 079 0.88  0.75 0.88
(Mixed)

Table 5.13.: Results obtained on REFIT test set with mixed training set. Best
scores are reported in bold (Section 5.5).

KE MW FR WM DW Fi-micco TECA

S-CRNN | 0.68 0.40 0.29 0.68 0.68 0.44 0.65

Proposed | o ve 0 45 021 043 0.74  0.47 0.68
(Mixed)

5.5. Results experiment 3: Mixed training set

In this experiment it is evaluated whether mixing weakly labeled data of REFIT
and strongly labeled data of UK-DALE during training improves the perfor-
mance compared to S-CRNN on the test sets of both datasets. Among the
benchmark approaches, S-CRNN is chosen since it is the best performing, and
it allows us to highlight the contribution of weakly labeled data since its archi-
tecture is similar to that of the proposed method. The percentage of UK-DALE
strongly labeled training set is 20%.

As shown in Table 5.12 for the UK-DALE dataset, the proposed network
trained on mixed datasets improves both Fj-micro and TECA with respect
to supervised learning. In particular, for Microwave and Dishwasher, the im-
provement is consistent, while for Kettle, Fridge, and Washing Machine, the
performance slightly deteriorates.

On the REFIT test set, Fi-micro improves by 6.8% when the mixed training
set is used compared to when training is performed only on strongly labeled
REFIT data (Table 5.13). TECA is also higher for the proposed method, with
a 4.6% improvement over S-CRNN. Note, however, that the Fj-score of all
appliances increases, and the only exceptions are the Fridge and the Washing
Machine. This result is coherent to what was reported in [97], where Washing
Machine was the only appliance with lower performance when training and
testing were performed on different datasets. Moreover, consider also that
in proposed case, only the UK-DALE validation set is used (Table 5.1) for
hyperparameters optimization, and Washing Machine is the appliance having
the largest quantity of strong labels compared to the others. Nonetheless, this
result evidences how a modest quantity of strong data with weak annotations
can positively enhance classification on unseen data for most appliances.
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Chapter 6.

A Multiple Instance Regression
Approach to Electrical Load
Disaggregation

The encouraging outcomes of the previous method have led to an expanded
strategy for reconstructing the power consumption profile of appliances. This
expansion benefits the user by reducing the costs associated with sensor instal-
lation, as mentioned in Chapter 1.

Given the unique nature of the problem, it is worth to discuss Multiple
Instance Regression (MIR) [102]. To the best of the author’s knowledge, weak
supervision has not been previously used to estimate an appliance’s active
power.

This chapter introduces a MIR-based approach for electrical load disaggre-
gation. In MIR, the goal is to predict multiple real-valued variables using weak
labels for training. In this context, real-valued variables are samples of an ap-
pliance’s active power, representing strong labels. Conversely, a weak label is
the average value of a segment of the appliance’s active power values.

The method utilizes both weak and strong labels to train a CRNN for load
disaggregation. Therefore, NILM is modeled as a MIR problem, and the avail-
ability of weakly labeled data is leveraged to decrease the amount of strongly
labeled data needed in supervised approaches, thereby enhancing performance.

This work has been presented and published in the proceedings of the Euro-
pean Signal Processing Conference (EUSIPCO) in 2022 [103].

6.1. Proposed Methodology

Instances are represented by samples of power reading of the mains y(t). y(¢)
is divided into windows of fixed length L and overlapped by P < L samples.
The bag j is defined as the j-th window of y(t) as follows:

yi = (L —=P)),....y(G(L - P)+ L —1)". (6.1)
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Figure 6.1.: The proposed architecture for MIR-based NILM.

Omitting the device index k for simplicity of notation, the strong labels
for bag y; of a generic appliance are represented by the ground-truth data
x; = [z(j(L-P)),...,z(j(L—P)+L-1)]".

The weak label of a bag depends on the strong labels of the instances within
the bag itself and, as explained above, the relationship is modeled by a pooling
function. Several alternatives have been proposed in the literature for regres-
sion [104]. In this work, the weak label w; related to bag y; and a generic
appliance is a scalar quantity calculated as the arithmetic average of the in-

stance labels:
L—1

w; =7 ;:vn(j(L—P)—H). (6.2)
With the above definitions, it is possible to formulate load disaggregation
using MIR more formally. Denoting with

T = {(Y1aw1,X1), ) (YMwayXM),

(Yms1,wnmy1), .-, (Y, wmyB)}, (6.3)

a set of M + B bags, in which M are annotated with strong and weak labels and
B only with weak labels, the goal is to learn a mapping function f : RX — R
from 7 for estimating the active power x of an appliance given a bag of unknown
aggregate power y. The mapping function f(-) is represented by a CRNN.

6.2. Neural Network and Learning

Load disaggregation is addressed by using the CRNN described in Section 5.1.1.
Specifically, here a different CRNN is trained for each appliance of interest.
The network takes a bag y of aggregate power as input and has two outputs:
a strong-level output and a weak-level output. The first provides an estimate of
the active power X. Supposing that L is odd, and P is even, since the aggregate
signal is processed in partially overlapped windows and y and X are of the
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same length L, only the L — P central value of the window output is retained.
The entire output sequence is reconstructed by joining the individual output
segments. The weak-level output is represented by the average of the instance-
level predictions, consistently with equation Equation 6.2. The difference with
the CRNN architecture described in Section 5.1.1 is the last layer that is a Fully-
Connected Layer with a linear activation function for generating the strong-
level predictions associated with the input window. The strong-level output is
further processed by an average pooling layer, followed by a linear activation
function in order to generate the weak-level prediction. The CRNN architecture
and the sliding window approach are depicted in Figure 6.1.

Given a set of annotated bags 7, the network is trained by using a loss
L = Ls 4+ AL, given by the weighted sum of the loss associated with the
strong-level output Lg, and the one related to the weak-level output £,,. The
term A is a weight that balances the contribution of the two losses. Both £, and
L., are calculated as the Mean Squared Error between the related prediction
and the target.

Considering a mini-batch containing J bags and a generic appliance, the two
losses are calculated as follows:

L
:LLZZ JL—P)+1)—2GL—P)+ D>,  (64)

=0 1=0
Jfl
=3 2::0 (6.5)

6.3. Experiments

This section describes the experiments conducted to evaluate the proposed
method.

The experiments have been carried out by using the UK-DALE dataset [24].
The appliances considered in the experiments are Microwave (MW), Fridge
(FR), Dishwasher (DW), Washing Machine (WM), and Kettle (KE). All houses
were included but, for houses 3 and 4, only Kettle and Fridge were considered.
The periods considered for each house are 2013/04/12-2015/01/05 for house
1, 2013/05/22-2013/10/10 for house 2, 2013/02/27-2013/04/08 for house 3,
2013/03/09-2013/10/01 for house 4, and 2014/06/29-2014/11/13 for house 5.
The aggregate active power is down-sampled to 6 s and aligned to the appliance
readings using NILM-TK [105]. Weak ground-truth labels have been created
by using equation Equation 6.2. The experiments have been conducted on
an unseen scenario, using house 2 data only for testing and data of the other
houses to train and validate the model. For each appliance, the original dataset
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is divided into training (1,200,000 samples), validation (150,000 samples), and
testing sets (2,100,000 for Kettle and 1,700,000 samples for the other appli-
ances).

6.3.1. Experimental procedure

Evaluation has been conducted in multiple training conditions, each charac-
terized by a different amount of strong labels. Two extreme situations are
considered: one where the amount of strong labels is very scarce, i.e., 5% of
the total number of strongly annotated bags in the training set, and one where
it is large, i.e., 100% the total amount in the training set. Moreover, three
intermediate values such as 20%, 40%, and 80% are considered, thus each time
doubling the amount of strong labels for training. The number of weak la-
bels, on the other hand, is always the same. For each appliance and training
condition, the aggregate signal is standardized by using mean and standard
deviation calculated from the training set and min-max normalization to the
target values is applied.

For each training condition, the approach is compared to the performance of
the Sequence-to-Point approach proposed in [29] implemented with a Convolu-
tional Network. More details on this benchmark approach are reported in the
Appendix Section 2.3. Also, the same CRNN network depicted in Figure 6.1 is
used as benchmark but without the bag-level output. Thus, training has been
performed only on strong labels in these cases.

Both for the proposed and the comparative methods, a different network is
trained for each appliance of interest by setting the maximum number of epochs
to 1000 and using the Early-Stopping regularization technique with patience
equal to 15 epochs. During the learning process,the ADAM optimizer [94] is
used, with a learning rate equal to 0.001, 8; and S equal to 0.9 and 0.999,
respectively, and € equal to 1077,

6.3.2. Hyperparameters

The loss weight A has been set to 1. Training has been performed in mini-
batches, where the batch size has been determined on the validation set to
minimize the error. The length L of the window is different for each appliance,
and it has been determined by evaluating the performance on the validation
set of the values reported in [29]. The determined values are 289 samples (29
minutes) for Microwave, 1025 samples (1 hour and 42 minutes) for Washing
Machine, and 599 (1 hour) samples for Fridge, Dishwasher, and Kettle. Differ-
ently, the amount of overlap P is equal for all the appliances and has been set
to (L — 1). This means that for each input bag, only the central value of the
output is retained.
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6.3.3. Evaluation metrics

The metrics used to evaluate the performance of the method are the Mean
Absolute Error (MAE) and the Normalized Error in assigned Power (NEP)
[105]. Both metrics are calculated for each appliance.

MAE and NEP are defined as:

T
1 R MAE
MAE = — > lx(t) —#(t)], NEP=T ——-r
t=1

, 6.6
2= 2(t) (66)

where #(t) is the power predicted by the network, x(t) is the corresponding
ground-truth value, and T is the number of samples of the segment under
evaluation. Basically, NEP is the MAE normalized by the total appliance’s
energy consumption, and it allows to evaluate the importance of the error
based on the appliance operating characteristics.

6.4. Results

The results obtained for each appliance and training condition are reported
in Table 6.1. The proposed method is indicated with Proposed, the CRNN
trained only with strong labels with CRNN-Strong, while the Sequence-to-
Point network with Seq2Point.

The obtained results show that regardless of the percentage of strongly la-
beled data used for training, the proposed method based on weak labels is able
to outperform the comparative algorithms. Compared to CRNN-Strong, MAE
reduces by 3.06 W on average, while compared to Seq2Point by 8.88 W. Simi-
larly, NEP reduces by 9.97 percentage points (pp) compared to CRNN-Strong
and by 30.59 pp compared to Seq2Point.

Observing the performance for the different percentages of strong labels, the
most remarkable improvement occurs when the percentage of strongly labeled
data is low, i.e., 5%, 20%, and 40%, both when the proposed method is com-
pared to CRNN-Strong and when it is compared to Seq2Point. This behavior
confirms that weak labels contribute the most to improving the performance
when the amount of strongly labeled data is scarce compared to weakly labeled
data. Another remarkable advantage of the proposed method is the reduction
of strongly labeled data quantity required to obtain the lowest error. As it
can be seen for Microwave, Fridge and Dishwasher, the lowest error among all
the percentages is achieved with weakly labeled data and when the quantity of
strongly labeled data is only 20% while for Washing Machine only the 5%.

A closer look at the behavior for the different appliances shows that in the
majority of the cases, the performance of the proposed method is superior
to the comparative methods. The only exceptions are Microwave when the
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percentage of strong labels is 80%, and Fridge and Washing Machine when the
percentage is 100%. Note, however, that the MAE difference is below 0.5 W
and that this occurs when the amount of strongly and weakly labeled data is
comparable: in this case, the influence of weak labels is less, a behavior that
could have been expected.

Figure 6.2 shows the ground-truth and the estimated active power for the
proposed and comparative methods when training is performed with different
percentages of strongly labeled data. The plots confirm the obtained results,
as the active power outputs produced using the proposed method are closer to
the ground-truth.
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Table 6.1.: Results obtained for the different training conditions and addressed
methods (Section 6.4). Best results for each appliance and percent-
age of strong labels are reported in bold.

% Appliance
Strong Model Metric MW FR DW WM KE  Average
MAE (W) 11.17 49.89 20.55 10.93 12.57 21.02
NEP (%) 113.82 59.69 48.98 70.56 42.52 67.11
5% MAE (W) 1138 5004 32.13 12.05 13.46 2381
CRNN-Strong - \pp E%)) 11595 59.86 7657 7778 4553  75.14
MAE (W) 1531 66.07 4806 1445 2872  34.70
NEP (%) 15592 79.05 116.69 93.23 97.14  108.41
MAE (W) 8.16  46.93 20.08 11.44 12.37 19.80
NEP (%) 83.10 56.15 47.86 73.82 41.84 60.55
(
(

Proposed

Seq2Point

Proposed

20% MAE (W) 832 4716 3728 12.65 1496  24.07
CRNN-Strong %) 8475 5642 88.85 81.65 50.59  72.45
MAE (W) 1115 66.15 3157 1299 2001 _ 30.17
NEP (%) 11354 7914 7524 8383 9812  89.97
MAE (W) 10.61 48.07 28.12 11.70 11.52  22.00
NEP (%) 108.09 57.52 67.02 75.48 38.97  69.42
40% MAE (W) 1529 5379 3333 1249 1263 2551
CRNN-Strong - ‘\pp E%)) 15583  64.35 79.44  80.63 4271  84.59
MAE (W) 13.00 6538 4642 23.00 1471  32.52
NEP (%) 13337 7822 110.63 14843 49.74  104.08
MAE (W) 990 50.95 26.62 12.19 10.54 22.04
NEP (%) 10100 60.96 63.45 78.64 35.66  67.94
(
(

Seq2Point

Proposed

Seq2Point

Proposed

80%  CRNN.Strone MAE (W) 955 5203 3309 1253 1533 2451
& NEP (%) 97.00 6225 7886 80.88 51.86  74.17

MAE (W) 1711 5398 2060 1461 1317  25.69
NEP (%) 174.23 6458 70.55 9428 4453  89.63
MAE (W) 10.89 4997 30.40 13.02 11.82  23.22
NEP (%) 110.96 59.79 72.46 84.02 39.97  73.44
100% MAE (W) 1270 49.90 37.14 12.72 148 2546
CRNN-Strong ypp E%)) 12034 59.70 88.52 82.12 5024  81.98

MAE (W) 1803 6585 3218 1731 1355  29.38
NEP (%) 18367 7879 7671 11168 4584  99.34
MAE (W) 10.15 49.16 25.15 11.86 11.76  21.62
NEP (%) 103.39 58.82 59.95 76.50 39.79  67.69
MAE (W) 1145 5058 3450 1249 1425  24.67
NEP (%) 11657 6052 8245 80.61 4819  77.67
MAE (W) 1494 6349 3775 1647 1983  30.49
NEP (%) 15215 7596 89.96 106.29 67.07  98.29

Seq2Point

Proposed
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Chapter 7.

Weakly Supervised Transfer
Learning for Multi-label Appliance
Classification

In the previous chapters, a novel supervision strategy has been introduced for
NILM. The method has been firstly trained and evaluated on the same data
domain. The method is proven effective but a more real-world scenario should
be investigated. In fact, it is unlikely that training data are similar to data to be
processed in the final environment. Based on the third experiment performed
in Section 5 where the training set was composed of both data domains, good
results have been obtained. This means that mixing the knowledge learnt from
two domains can improve the generalization on both.

Starting from the promising performance, a transfer learning method will be
introduced in this chapter. The method has been published in [3]. Transfer
learning is an effective strategy for increasing generalization capability in these
cases: recent methods operate by pre-training a neural network on a large
dataset and then fine-tuning it on data acquired from the target environment
[106, 96, 107]. However, this approach needs an additional acquisition phase
in the target environment to collect the fine-tuning set. Semi-supervision can
be involved but as reported in [108], although it is supposed that unlabeled
data will bring a benefit, several empirical works demonstrated that the lack
of labels decreased the performance.

In this view, weak labels are a trade-off between the complete absence of
information on target data and the excessive effort requested to the user. In
fact, in a target environment, weak labels can be obtained from the users’
feedback, asking them if an appliance was active or not during a certain time
window. Thus, an information is provided to the network although coarser.
As pre-training set, public available data can be used or an already available
pre-trained model can be considered. In this way, annotation collection is not
necessary for the pre-training phase, and the user intervention is needed only to
collect labels in the final environment. It is worth highlighting that the quan-
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tity of annotated data required for transfer learning is much less than the data
necessary to completely train a model from scratch. Thus, a transfer learn-
ing approach for multi-label appliance classification based on multiple-instance
learning has been proposed for the first time. For the sake of completeness,
different scenarios will be evaluated. In fact, weak labels are considered avail-
able also in the pre-training dataset. The benefit is the possibility to exploit
all the types of labels available to enlarge as much as possible the training set.
A subset of data with only partial information available is a real case. Instead
of discarding them, they can be included in the training set.

7.1. Proposed Methodology

The formulation of the NILM problem as Multiple-Instance Learning refers to
Section 2.1 and Section 5.1

Consider a training dataset D given by
D = Dstrong—weak ) Dweak: (71)

where Dgtrong—weak = {(¥1,W1,81), ..., (¥, War, Sar)} is a dataset composed
of M bags annotated with strong and weak labels, and Dyesr =
{(ym+1:War1), -+ (YM+k, W)} is a dataset composed of K bags an-
notated with weak labels only.

The objective is to learn a function f : RY — RE*L from D that provides
an estimate S of S by using only the knowledge of the aggregate power y. The
function f(-) is represented by a CRNN described in Section 5.1.1.

Similarly to [106], transfer learning here is performed by pre-training the
neural network on a large dataset D®") | and then by fine-tuning it on a different
dataset DU, Both dataset can be composed as in Equation 7.1. D®Y can
contain data only from the source domain or both from the source and target
domains, while DU?) contains data only from the target domain.

As shown in Fig. 7.1, during fine-tuning, all the weights of the convolutional
blocks are not updated (frozen) to avoid performance degradation [106]. Fine-
tuning is performed only on the recurrent subpart and on the instance layer
based on the performance obtained in the validation phase.

Based on the neural network architecture, two loss terms can be defined L,
and L,,, respectively related to the instance and bag output. Both losses are
the binary cross-entropy for the related output and they are calculated as in
Equation 5.7 and Equation 5.8, where the bag index j has been omitted for
simplicity of notation.

A significant advantage of the proposed method is that it allows to use strong
or weak labels in the pre-training and fine-tuning phases depending on the
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lllll)

Trained Layers

Target Domain ' I

Frozen Layers Fme-tuned Layers

Source Domain

Figure 7.1.: Transfer learning with weak supervision. The model is trained
with source domain data. Then the CNN blocks are frozen, and
the remaining layers are fine-tuned with target domain data.

composition of D@ and DUY . Supposing that

D(pt) D(It):‘)ong weak U Dz(fett)zk’ (72)
(f1) (1)
D(ft) D strong—weak U Dweak’ (73)

the model can be pre-trained both on strongly and weakly annotated data if
D) # @, or only on weakly annotated data if D) = .

strong—weak strong—weak

In the first case, the training loss is Ly = L5 + A\L,,, where \ balances the

contribution of the two losses, while in the second case L;. = L,,. Moreover,

(pt)

it is possible to combine data from different domains, e.g., Dy, 00 wea

L can

contain data from the source domain while fo ;ak

Similarly, fine-tuning on the target domain data can be performed differ-

from the target domain.

ently based on the available annotations: if D({f) # @, fine-tuning

ong—weak

is performed using both strongly and weakly labeled data and the related
loss is Ly, = Ls + BLy, with 8 balancing the two losses. Conversely, if

Di{:gn g—weak = 9, fine-tuning is performed only on weakly labeled data and
Ly =Ly
It is worth noting that the case where Dilt’:z)ng—weak # &, and Dg{;()mg_weak =

@ and Diflz)ea x 7 @ is of particular relevance in a practical scenario since a large
number of public datasets with strong annotations is available to pre-train the
network, and the model can be fine-tuned by collecting data from the target
domain and annotating it only with weak labels, thus reducing the labeling
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Table 7.1.: Train, Validation and Test sets characteristics for REFIT. Number
of labels is reported in thousands. SL: Strong Labels. WL: Weak

Labels.
Train Validation Test and Fine-tuning

Appliance Houses Nr. of S Nr. of WL Houses Nr. of SL Nr. of WL | Houses Nr. of SL  Nr. of WL

KE 3,5,6,7,19 3217.0 54.1 3,5,6,7,19 678.6 12.7 2,4,8,9 1182.9 244

MW 10, 12,17, 19 2476.9 59.9 10, 12, 17, 19 606.9 9.9 4 436.6 8.4

FR 5,9,12 5433.7 62.0 5,9, 12 1434.1 2.4 2,15 1214.6 0.9

WM 5,7,15-18 1559.4 57.9 5,7, 15-18 1788.2 4.1 2,8,9 1362.6 2.0

DW 57,13 520.292 52.7 5,7,13 2977.3 3.8 2,9 2153.8 2.0
Nr. of bags 186.743 21.115 25.452

effort.

7.2. Experimental Setting

7.2.1. Dataset

UK-DALE and REFIT datasets have been used to evaluate the performance
of the proposed method. Kettle (KE), Microwave (MW), Fridge (FR), Wash-
ing Machine (WM), and Dishwasher (DW) are the appliances of interest. For
both datasets characteristics please refers to Section 1 For training and vali-
dation sets composition please refers to Table 5.1. Table 7.1 report the details
about sets for the two sets of bags created respectively from REFIT. Data was
standardized using mean and standard deviation estimated on the training set.

7.2.2. Experimental setup

The experimental setup has been designed to evaluate several possible real-
world scenarios that differ in data and annotations availability, based on the
formulation in Section 8.1. The performance has always been evaluated on 70%
of the REFIT “Test and Fine-tuning” set reported in Table 7.1.

Referring to Equation 7.2, three pre-training dataset compositions are de-
fined:

(pt) _
strong—weak — & and

prt) x 7 @ is composed of bags from the UK-DALE dataset. Pre-training

wea.

1. Only weakly labeled data is available: in this case, D

and test data in this case are from different domains.

2. Both strongly and weakly labeled data from the same domain is available:
in this case, Dif;)ong_weak # @ and Dget()lk # &, and they are both com-

posed of bags from the UK-DALE dataset. As in the previous condition,
pre-training and test data are from different domains.

3. Both strongly and weakly labeled data is available, but in this case they

are from different domains: Di’t’:zm g—weak 7 @ is composed of bags from
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Table 7.2.: CRNN hyperparameters after tuning.

Dataset H|U | K. |»p CS
S-W UK-DALE | 3 |64 |5 0.1 | No
W UK-DALE 4 1615 0.1 | Yes
S-W REFIT 4 [64]5 0.1 | No

the UK-DALE dataset and D" i 7 @ from bags of the REFIT dataset.

wea.
Part of the pre-training and the test data are from the same domain.

Regardless the pre-training condition, the validation set is represented by UK-
DALE.

Fine-tuning has been performed on 30% of the bags from each house of the
REFIT “Test and Fine-tuning set” reported in Table 7.1. Referring to Equa-
tion 7.3, the fine-tuning dataset can be composed of 1) strongly and weakly an-
notated data from the target environment (D(f t # &); 2) Only weakly

strong—weak

labeled data from the target environment (Dfﬂf etgk # ). The last condition is
of particular interest since it considers the case where data from the target en-
vironment is annotated only with weak labels. Thus, the labeling effort related

to data collected in the target environment is significantly reduced.

Fine-tuned models have been compared to a baseline model (denoted as
Baseline) obtained by using REFIT strongly and weakly labeled data both for
training and validating the network and without fine-tuning it. The Baseline
model, thus, considers the case where data from the same domain of the test
set is available for training and represents an ideal case. Moreover, also the
performance of pre-trained models are evaluated prior to fine-tuning (denoted
as No Fine-Tuning).

For each pre-training condition, the Hyperband algorithm [99] from Keras
tuner has been used to select the hyperparameters values that achieve the
highest performance on the validation set. Learning is performed by using
Adam [94] and the learning rate was fixed to 0.002. The number of filters
F is set to 32. The final hyperparameters values are reported in Table 7.2.
When the source dataset is only weakly labeled, fine-tuning the bidirectional
and instance layers has proven the best performing method on the validation
set. For the other two conditions, only the instance layer has been fine-tuned.

The threshold for binarizing instance level predictions has been determined
on the validation set for each pre-training condition.

The code related to this work is available on GitHub!.

Lhttps://github.com/GiuTan/Weakly TransferNILM
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Table 7.3.: Results related to the Baseline and all the pre-training scenarios.
Best results are reported in bold. Kettle: KE, Microwave: MW,
Fridge: FR, Washing Machine: WM, Dishwasher: DW.

Method Labels Dataset KE | MW | FR | WM | DW | Fi-micro
Baseline Strong & Weak REFIT 0.82 | 0.82 | 0.20 | 0.71 | 0.77 0.69
No Fine-Tuning Weak UK-DALE | 0.68 | 0.44 | 0.01 | 045 | 0.33 0.41
Fine-Tuning Strong & Weak REFIT 0.87 | 0.72 | 0.22 | 0.68 | 0.71 0.68
Fine-Tuning Weak REFIT 0.66 | 0.57 | 0.00 | 0.49 | 0.36 0.45
No Fine-Tuning | Strong & Weak | UK-DALE | 0.82 | 0.46 | 0.12 | 0.74 | 0.74 0.59
Fine-Tuning Strong & Weak REFIT 0.87 | 0.71 | 0.18 | 0.76 | 0.74 0.67
Fine-Tuning Weak REFIT 0.83 | 0.74 | 0.16 | 0.76 | 0.78 0.71
No Fine-Tuning | Strong & Weak Mixed 0.78 | 0.46 | 0.11 | 042 | 0.62 0.52
Fine-Tuning Strong & Weak REFIT 0.86 | 0.81 | 0.37 | 0.62 | 0.68 0.67
Fine-Tuning Weak REFIT 0.85 | 0.77 | 0.25 | 0.44 | 0.69 0.61

7.3. Results and Discussion

Table 7.3 shows the results obtained with the three pre-training conditions and
the related fine-tuning. The metrics used to evaluate the proposed approach is
the Fy-score (F1) and the related micro-average already defined in Equation 5.9
and Equation 5.10.

Observing the results, it is evident that weak supervision and transfer learn-
ing play a key role in obtaining performance close to the Baseline while reducing
labeling effort. When the network is trained on weakly labeled data, and it
is not fine-tuned (second row of Table 7.3), the performance is significantly
lower compared to the Baseline. After fine-tuning with strong and weak la-
bels and weak labels only, the Fj-micro increases by 65.8% and 8.9% (F7:0.68
and F3:0.45 compared to F3:0.41), respectively. Compared to the Baseline, the
Fi-scores of Kettle and Fridge improve by 6.1% and 9% (F3:0.87 and F}:0.22),
respectively, if strong labels are considered in the fine-tuning set.

When the CRNN is trained on strong and weak labels from UK-DALE (fifth
row of Table 7.3), Fi-micro is lower compared to the Baseline, while the Fj-
score of the Washing Machine improves by 4%. Differently, compared to the
model pre-trained only on weakly labeled data, all the appliances are better
classified. After fine-tuning, the performance increases independently of the
type of annotations. Remarkable performance can be observed when the CRNN
is fine-tuned with weakly labeled data only (seventh row of Table 7.3), with an
improvement of 20.3%. Moreover, the result improves by 2.9% for Fi-micro if
compared to the Baseline.

This result is particularly significant since it means that pre-training the
network with strong and weak labels from the source domain (UK-DALE) and
fine-tuning it on weakly labeled data from the target domain (REFIT) results
in superior performance compared to training on strongly and weakly labeled
data from the target domain (REFIT). Single appliance behavior differs since
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Figure 7.2.: Classification predictions produced by each pre-trained model after
fine-tuning with weakly labeled data. Data is from REFIT house
2. AGG: Aggregate.

Kettle and Fridge show the best performance when fine-tuning is performed
on strong and weak labels. At the same time, Microwave and Dishwasher are
better classified when fine-tuning is performed on weak labels only. For the
Washing Machine, in both conditions the performance improves compared to
the Baseline by 7% after fine-tuning, meaning that weak labels are useful as
well as the strong ones. The F}-score of the Dishwasher improves by 1.2% with
respect to the Baseline.

Without fine-tuning, pre-training the model on strong and weak annotations
of the mixed dataset (eighth row of Table 7.3) obtains better performance com-
pared to pre-training only on weak labels (second row of Table 7.3), but lower
than pre-training on strong and weak annotations (fifth row of Table 7.3). This
is related to the number of strongly annotated bags which are 20% of the en-
tire UK-DALE set. When fine-tuned with strong annotations, the Fj-micro
improves by 30%, while when target data are weakly labeled it improves by
17.3%. The Dishwasher is classified better when fine-tuning is performed with
weak data only. In this condition, the labeling effort is reduced both for the
pre-training and the fine-tuning set. Compared to the baseline, Kettle and
Fridge Fi-micro improve by 4.8% and 85%, respectively. In summary, when
the model is pre-trained only on weakly annotated data of the same domain,
strong labels are required to fine-tune the network and obtain satisfactory per-
formance. Conversely, when the network is pre-trained with strong and weak
labels, weak data from the target environment are sufficient to improve per-
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formance in terms of Fj-micro. For some appliances, by using weak labels for
fine-tuning is better than using strong labels to improve performance. In the
mixed case, since the quantity of strongly labeled data in the pre-training set
is small, strong and weak fine-tuning results better than using only weak data.

Figure 7.2 shows the predictions produced by each pre-trained model after
fine-tuning with weak labels. Since some predictions are overlapped, outputs
are re-scaled for better visualization. It is evident that the fine-tuning on weak
labels when pre-training is performed on strong and weak labels results in a
more accurate prediction compared to the other models. In particular, this is
highlighted for the Kettle and the Dishwasher.

76



“output” — 2024/5/8 — 10:11 — page 77 — #103

Chapter 8.

A Weakly Supervised Active
Learning Framework for
Non-Intrusive Load Monitoring

While weak labels and transfer learning alleviate the burden of manual labeling,
the process of fine-tuning still requires labeling a substantial number of data.
The effort can be demanding for users.

Active Learning (AL) approaches [109, 110] are employed to optimize data
selection for artificial intelligence algorithms. These approaches focus on iden-
tifying the most informative data, thereby reducing the number of labeled data
segments that need to be added to the training dataset. Importantly, this
reduction in data labeling does not compromise algorithm performance [83].

AL for NILM has not been extensively investigated yet - there have only
been a few attempts for event-based methods using high-frequency load mea-
surements, as already treated in Chapter 4.

Integrating the inexact supervised learning strategy into the AL framework
with transfer learning avoids the need for expert labelling of target domain
data, and annotation effort is reduced both in terms of the number of signal
segments and the amount of information requested from users.

To address this gap, in this chapter a weakly supervised AL NILM approach
is developed to reduce the number of signals that need to be weakly labeled
by users. By asking to assign only weak labels to the most uncertain segments
of the aggregate signal and sampling the fine-tuning set, the user annotation
effort is further reduced while obtaining improved performance compared to
[3, 88] upon which it is built. The proposed method is completely based on
weak supervision, from the network pre-training to the adaptation in the target
environment through to the AL procedure. This method has been accepted for
publication in the journal "Integrated Computer-Aided Engineering" in 2024.
[4].
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8.1. Learning Strategy
Consider a pre-training dataset D®Y) given by

D(;Dt) = Dizt)f'z)ngfweak U D1(1Z))et¢)zk7 (81)

where

Dgﬁilngfweak = {(y17W17 Sl)7 LR (y]\/fa WM, SM)}

is a dataset composed of M bags annotated with strong and weak labels, and

fo.:ik ={(ym+1,Wnrs1), -, (Ym+B, WMy B)}

is a dataset composed of B bags annotated with weak labels only, from the
source domain. Another set Dy =
{ym+B+1,---,YmiprE} of electricity load measurements, called query pool,
composed of E unlabelled bags is collected in the target environment, repre-
senting the pool for the AL process.

Based on the neural network architecture, two loss terms are defined L,
and L,,, respectively, related to the instance and bag output. Both losses
are the Binary Cross-Entropy functions for the related output calculated as is
Equation 5.7 and Equation 5.8. Learning is initially performed by pre-training
the neural network on a large public dataset D®Y). A significant advantage
of the proposed method is that it allows to use strong or weak labels in the
pre-training phase depending on the composition of D@ The model is pre-

trained both on strongly and weakly annotated data if Dg?ong_weak #+ @, or
only on weakly annotated data if Dgf’)ong—weak = . In the first case, the

training loss is L,y = L5 + ALy, where A balances the contribution of the
two losses, while in the second case it is £,; = L£,,. During fine-tuning, the
weights of all the convolutional blocks are not updated (i.e., they are frozen) to
avoid performance degradation [106]. Instead, fine-tuning is performed only on
the recurrent subpart and on the instance layer using the dataset Qo ;. This
dataset contains a set of bags, annotated only with weak labels, obtained by
labelling a subset Qu; of Dy at each iteration i. Additional details on Qo
and Qu,; are provided in Section 8.2. The fine-tuning loss Ly, is equal to £,
since only weak labels are supposed to be available from the target environment
(i.e., Qo is annotated only with weak labels).

8.2. Weakly Supervised AL Framework

The proposed Weakly Supervised AL framework, schematically illustrated in
Figure 8.1, comprises the CRNN model pre-trained using D), the query pool
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Figure 8.1.: Weakly Supervised AL Scheme. Each block corresponds to an ele-
ment of the framework. The Convolutional Recurrent Neural Net-
work (CRNN) model generates both strong and weak predictions.
During the AL process, strong predictions are used to evaluate the
current model, while weak predictions serve as input for the ac-
quisition function. The acquisition function selects the windows to
be labelled based on the uncertainty of the network predictions.
The most uncertain windows are chosen, suggested to the user for
annotation, and then incorporated into the fine-tuning set for the
subsequent fine-tuning phase. A detailed description of the entire
framework can be found in Section 8.2.

Dy; for which only weak labels can be obtained on demand, and an acquisition
function ¢(-) used to rank bags from Dy and choose the most informative ones
to be included in the fine-tuning of the model.

The AL process is iterative, and the iterations are indicated with ¢ and with
fo, the CRNN model trained at iteration ¢. The pre-trained model fg, first
makes predictions on the whole query pool Dy and provides its predictions to
the acquisition function. The acquisition function then chooses a subset Qu; C
Dy, with ¢ = 1,..., I indexing the current query of most informative aggregate
bags, accounting for model uncertainty when making predictions; the more
uncertain the model is about a bag, the more the bag contributes towards the
model prediction if included in fine-tuning.

Then, labels are queried for the chosen subset of bags as a result of the
acquisition function. Let Queqk,; be the weakly annotated set during the i-th
query, composed of P bags. At the end of the loop, the model is fine-tuned
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Algorithm 1 Pseudo-code for the Weakly Supervised AL procedure.

141
fg,: pre-trained CRNN model
q(+): acquisition function
Dy query pool, unlabelled
P: batch size
Qioti — @
while | Dy [> 0 do
Qu.i < q(fs,_,, P,Dy)
Dy < Dy \ Qu.i
Queak,i < weakly labelled Qu;
Qiot,i + Quot,i—1 U Queak,i
fo, « fg, fine-tuned with Q¢ ;
1 1+1
end while

using bags belonging to
Qtot,i = Qtot,ifl U Qweak,iai =1,..,1, (82)

queried up to the i-th query. Note that Q0,0 is an empty set. The knowledge
of the new, improved model fg,,% > 0 is used to further select samples for
labelling. This procedure runs iteratively until all bags from the query pool
are exhausted.

A pseudo-code of the weak AL procedure proposed in this paper is given in
Algorithm 1.

Upon completion of the process, only the model that meets the desired crite-
ria—namely, achieving a balance between good performance and a small data
footprint, is employed to classify appliances. Importantly, the predictions made
by intermediate models during the process are not considered. These post-fine-
tuning models play a crucial role in selecting the subsequent batch of data for
further refinement. Once this selection process is complete, the model can be
safely discarded, as it will not be utilized in subsequent iterations.

The challenge of active learning (AL) with weak labels for a multi-appliance
Non-Intrusive Load Monitoring (NILM) model is multifaceted. First, the lim-
itation of having only weak labels available from the target domain. Addi-
tionally, the approach aims to monitor multiple appliances concurrently within
the same network. However, this simultaneous monitoring can pose difficulties.
Improving the performance of one appliance type does not necessarily translate
to improvements for all other devices. In fact, enhancing the performance of
one appliance may inadvertently lead to decreased performance for others.

This behavior significantly impacts the AL process, especially when dealing
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with an appliance that exhibits notably lower performance compared to other
loads in the household. In such cases, the selection of training instances (re-
ferred to as "bags") is more likely to focus on improving the most problematic
appliance rather than addressing all appliances simultaneously. In the following
sections, the strategy to tackle these challenges will be described.

8.3. Acquisition function

Acquisition function ¢(-) is used to rank bags in Dy with respect to their
informativeness, choosing the best subset Q; to include in model fine-tuning.

The acquisition function used in this paper is uncertainty-based, which demon-
strated in [88] to be the best performing among several compared acquisi-
tion functions. In iteration i,7 > 0, bags with the highest uncertainty levels,
Qu: C Dy are chosen to be labelled, denoted as Queak i, and included in
fine-tuning dataset Qo ;-

Weak level prediction of the model for a given bag is a vector containing
probabilities of each appliance being in an active state inside that bag, which
can be used to estimate uncertainty levels of the model. If a probability for a
particular appliance is higher than decision threshold 5 then the model predicts
that the appliance was active during the bag time period. The closer the
prediction wy, of the model for an appliance k to § is, the more uncertain the
model is about activation of this appliance, and the closer wy, to 1 or 0, the more
certain the model is. Formally, an estimate of model uncertainty is defined as:

L] = {wk[J]A | Ujkm < 53)
1 —aglj] @xlj] =B

with dx[j] being the estimated uncertainty of the model for bag j for single ap-
pliance k, and w[j] is the model output, i.e., the model’s estimated probability
that k-th appliance was active in the bag j.

Since the problem considered in this paper is multi-label classification, with
multiple appliances considered at the same time, two ways of estimating the
overall model uncertainty §[j] for bag j are:

e by taking maximum uncertainty level across appliances present in the
house:
31j] = mac ] (34)

e by averaging uncertainty level over all appliances present in the house:

ol = = 3 dulj) (8.5)

=
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Table 8.1.: Uncertainty-based acquisition function example: Uncertainty levels
for each appliance are calculated as per (8.3), and, maximum or
mean uncertainty values are calculated based on (8.4) and (8.5),
respectively. In this example, a batch of P = 4 most uncertain bags

is chosen.

Bag index | Weak level prediction 0y [j] Uncertainty d[j] Maximum Mean
i KE MW WM DwW KE MW WM DW | uncertainty | uncertainty
0 0.1 0.6 0.4 0.8 0.1 0.4 04 02 0.4 0.275
1 0.2 085 0.33 0.68 0.2 015 0.33 0.32 0.33 0.25
2 099 0.2 087 0.3 0.01 02 013 03 0.3 0.16
3 056 038 025 092 |044 0.38 0.25 0.08 0.44 0.2875
4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
5 0.67 043 0.01 0 0.33 043 0.01 0 0.43 0.1925
6 036 0.15 0.64 075 |[036 0.15 036 0.25 0.36 0.28
7 083 072 059 041 | 0.17 028 041 041 0.41 0.3175
8 0 0.5 0 0 0 0.5 0 0 0.5 0.125
9 0.04 099 088 0.02 | 0.04 0.01 0.12 0.02 0.12 0.0475

Then, the set of bags Qu,; with the highest uncertainty §[;] is included in
the fine-tuning set. The resulting acquisition function, ¢(-), is as described in
Algorithm 2.

Algorithm 2 Acquisition function

f;: CRNN model
Dy query pool, unlabelled
P: batch size
procedure ¢(f;, P,Dy)
for jin {1,...,| Dy |} do
wlj] « £:(Dulj))
calculate uncertainty §[j]
end for
ind = argsort([6[1]...6]| Dy |]], descend.)]: P]
return Dy [ind)
end procedure

A toy example of how the acquisition function described above works, for
both cases of maximising and averaging uncertainties of individual appliances
is given in Table 8.1. Table 8.1 shows the selected bags (a batch of P = 4) in
grey for maximum uncertainty across all appliances in the 4-th column and for
maximum average uncertainty over all appliances in the 5-th column.

The code used to implement the approach is available on Github!.

Lhttps://github.com/GiuTan/WeaklySupervised ActiveLearning-for-NILM
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Table 8.2.: Fine-Tuning and Test sets characteristics for REFIT. Number of
labels is reported in thousands. WL: Weak Labels.

Appliance Nr. of WL
House 2 House 4 House 5 House 19
KE 2.9 12 9.5 13.6
MW - 12 - 13.6
WM 2.9 - 0.5 -
DW 2.9 - 0.5 -
Nr. of bags 2.9 12 9.5 13.6

8.4. Experimental Setting

8.4.1. Dataset

UK-DALE [24] and REFIT [25] datasets are used to evaluate the performance
of the proposed method with typical appliances present in most households
- Kettle (KE), Microwave (MW), Washing Machine (WM), and Dishwasher
(DW). The fridge is excluded in this work. This decision was made since
a fridge is typically always in operation, which would mean the user would
consistently assign the ON label. Although the fridge is not monitored, it is
present in the aggregate dataset.

Datasets have been used to create two sets of bags, one with UK-DALE
data from Houses 1, 3 and 5 and one with data from four REFIT Houses 2, 4,
5 and 19. This choice has been made to include 4 houses that have different
aggregate consumption characteristics, and have at least two appliances present
in each house for evaluation. Note that the occurrence of appliance activations
and the number of strong labels associated with each appliance in both sets
of bags are balanced. Table 5.1 reports the details about training set for UK-
DALE. Table 8.2 reports validation, and test sets details for REFIT. The set
used to validate the performance during AL process is the test set. Data was
standardised subtracting the mean and dividing by the standard deviation,
estimated these values on the pre-training set.

8.4.2. Experiments setup

The experimental setup has been designed to evaluate several possible real-
world scenarios that differ in annotation availability, based on the formulation
in Section 8.1. In this way, the benefits from the AL procedure in more pre-
training conditions can be evaluated. The performance has always been evalu-
ated on 70% of the REFIT “Test and Fine-tuning” set reported in Table 8.2.

Referring to Equation 8.1, two pre-training dataset compositions are defined:

83



“output” — 2024/5/8 — 10:11 — page 84 — #110

f

—

Chapter 8. A Weakly Supervised Active Learning Framework for Non-Intrusive Load Monitoring

e Scenario 1: only weakly labelled data is available: in this case, DY

@ and fot) x 7 @ is composed of bags from the UK-DALE dataset.

ea

e Scenario 2: both strongly and weakly labelled data from the same domain
are available: in this case, D" . 7 @ and D(pt)k # @, and they

strong—wea wea

are both composed of bags from the UK-DALE dataset.

Regardless of the pre-training condition, the validation set is represented by
UK-DALE.

The bags that populate the query pool Dy for AL and that are used for the
fine-tuning are up to 30% of the bags from each house of the REFIT “Test and
Fine-Tuning set”, reported in Table 8.2.

For each pre-training condition, the Hyperband algorithm [99] from Keras
tuner has been used to select the hyperparameters values that achieve the
highest performance on the validation set. During the AL process, there is not
any optimisation of hyperparameters. This is because the structure of the fine-
tuned network is the same as that of the pre-trained network. The pre-trained
network has already been optimised during the pre-training phase, performed
in [3]. Adam [94] is used as optimiser and the learning rate was fixed to 0.002
and F to 32. In the experiments L = 2550 (that is a window of 4.15 hours)
samples is set for the bag dimension and P = 64 is the batch size.

When the source dataset is only weakly labelled, fine-tuning the bidirectional
and instance layers has proven the best performing method on the validation
set. When strongly labelled data are also available, only the instance layer has
been fine-tuned.

8.4.3. Benchmark method

In [3] a weakly supervised transfer learning approach has been proposed. Both
the pre-training and the fine-tuning exploits only weak labels, or both weak
and strong labels. In the fine-tuning phase, a set of weakly annotated signals
has been supplied to the network to adapt the pre-trained model on the target
environment domain. The best models obtained from the proposed method
have been compared to “No Fine-Tuning” model [3], thus prior to fine-tuning,
and “Weak Transfer Learning” model [3] obtained using the complete set of
query pool data weakly annotated.

Additionally, the proposed method is compared against a semi-supervised
method based on knowledge distillation, proposed in [5], that is pre-trained
using only strong labels, but in the fine-tuning phase only unlabelled data is
fed to the model, as considering that labels from the target environment are
not readily available. Thus, unlabelled data are exploited during learning with
the same strategy adopted in the original work that proposed a semi-supervised
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approach [5]. Because of absence of labels from the target environment, and
the way that the model works, bags with the lowest uncertainty were chosen
instead of the highest during the AL process for this benchmark.

8.4.4. Evaluation metrics

Two metrics have been used to evaluate the proposed approach. The first is
the Fi-score (F1) and the related micro-average already defined in Equation 5.9
and Equation 5.10.

Optimal point of AL iteration process is determined as a point at iteration
1 with Fij-score Fi ; that has the minimum distance d; from an “ideal" point -
no data labelled, and perfect performance of F; = 1, as in [88]. The distance is
calculated according to Equation (8.6), where |Q;. ;| denotes the total number
of bags queried up to iteration ¢, and |@Q;o¢,r| denotes the maximum number of
bags that can be queried.

) 2
di = \/<7|| 8:;1 ||) +(1—Fry)2 (8.6)

8.5. Results

This section presents the results obtained from the two experimental scenar-
ios, as well as from the semi-supervised benchmark method. Fj-scores are
shown per appliance for each house. Models pre-trained on UK-DALE were
transferred to REFIT houses 2, 4, 5 and 19 - Dataset column indicates the
fine-tuning test set. The optimal points and maximum performances obtained
during the AL process are given together with the percentage of query pool
data labelled and added to the fine-tuning dataset to achieve that performance.
Note that not all houses contain all the appliances - results are shown only for
monitored appliances installed in the selected buildings.

8.5.1. Semi-supervised benchmark results

Experimental results for the semi-supervised benchmark approach [5] are pre-
sented in Table 8.3. In this case, strongly labelled data were used during the
pre-training phase, and unlabelled data were utilised throughout the AL pro-
cess. This scenario is challenging because with the semi-supervised strategy
the model is fine-tuned with unseen data from the target environment without
any labels provided. According to Table 8.3, the performance in House 2 does
not improve after fine-tuning with all available data (100% of unlabelled bags
used). There is a very limited improvement with AL for kettle only, but the
performance level of the fine-tuning case with 100% of unlabelled bags used
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Table 8.3.: Benchmark - semi supervised method [5]. Model is pre-trained using
strong labels, but fine-tuned using only unlabelled data from target
environment. Results of the proposed approach are shown in the
following format: metric (% of activation samples added to fine-
tuning dataset).

[ Method [ KE | ™MW | WM | DW [ Fimico
No Fine-Tuning [5] 0.55 - 0.41 0.58 0.50
Unsupervised
Transfer Learning [5] 0.55 - 0.41 0.58 0.50
AL (max uncertainty)
- optimal point 0.55 (13.3%) - 041 (6.7%) | 0.58 (6.7%) | 0.50 (6.7%)
H2 | AL (max uncertainty)
~ best F1 0.56 (80%) - 0.41 (6.7%) | 0.58 (6.7%) | 0.50 (6.7%)
AL (mean uncertainty)
- optimal point 0.54 (13.3%) - 0.41 (6.7%) | 0.58 (6.7%) | 0.50 (6.7%)
AL (mean uncertainty)
~ best F1 0.56 (73.3%) - 041 (6.7%) | 0.58(6.7%) | 0.50 (6.7%)
No Fine-Tuning [5] 0.42 0.38 - - 0.39
Unsupervised
Transfer Learning [5] 0.44 0.44 - - 0.44
AL (max uncertainty)
- optimal point 0.44 (13.8%) | 0.41 (10.3%) - - 0.42 (13.8%)
H4 | AL (max uncertainty)
- best F1 0.45 (20.7%) 0.44 (38%) - - 0.44 (38%)
AL (mean uncertainty)
- optimal point 0.45 (1.7%) | 0.41 (12.1%) - - 0.41 (12.1%)
AL (mean uncertainty)
- best F1 0.45 (1.7%) | 0.44 (98.2%) - - 0.44 (98.2%)
No Fine-Tuning [5] 0.86 - 0.02 0.04 0.05
Unsupervised
Transfer Learning [5] 0.86 - 0.02 0.04 0.05
AL (max uncertainty)
- optimal point 0.86 (4.3 %) - 0.02 (2.2 %) | 0.04 (22 %) | 0.05 (2.2 %)
H5 | AL (max uncertainty)
~ best F1 0.87 (60.9 %) - 0.02 (2.2 %) | 0.04 (2.2 %) | 0.05 (2.2 %)
AL (mean uncertainty)
- optimal point 0.86 (4.3 %) - 0.02 (2.2 %) | 0.04 (2.2 %) | 0.05 (2.2 %)
AL (mean uncertainty)
- best F1 0.87 (97.8 %) - 0.02 (2.2 %) | 0.04 (22 %) | 0.05 (2.2 %)
No Fine-Tuning [5] 0.82 0.61 - - 0.69
Unsupervised
Transfer Learning [5] 0.82 0.61 - - 0.69
AL (max uncertainty)
- optimal point 0.82 (3.1 %) | 0.63 (1.5 %) - - 0.70 (1.5 %)
H19 | AL (max uncertainty)
~ best F1 0.82 (3.1 %) | 0.64 (89.2 %) - - 0.70 (1.5 %)
AL (mean uncertainty)
- optimal point 0.82 (3.1 %) | 0.62 (1.5 %) - - 0.69 (1.5 %)
AL (mean uncertainty)
~ best F1 0.83 (43.1 %) | 0.63 (60 %) - - 0.70 (60 %)
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can be achieved using a smaller amount of data (6.7% - 13.3%). In House
4, performance improves when all available bags from target environment are
used, and the amount of data can be reduced to at least 38% of all data. In
house 5, the situation is similar as in house 2 - no improvement after fine-tuning
with all available unlabelled bags, and only small improvement for kettle with
large portion of unlabelled bags used with AL. There is a similar situation in
house 19 - no improvement after fine-tuning with all available unlabelled data,
but small improvement for microwave with AL. The results from this bench-
marking scenario suggest that while some improvement can be achieved using
only unlabelled data to fine-tune the model to the new environment, it is not
sufficient, and adding some labelled data is desirable. Therefore, results for
weakly supervised AL scenarios are presented next.

8.5.2. Weakly Supervised AL Performance

Experimental results for the scenario where only weakly labelled data is avail-
able in the pre-training phase - pre-training scenario 1, and weak labels are
used throughout the AL process, are presented in Table 8.4. This scenario is
very challenging, because the model never sees strong labels, neither during
pre-training nor during fine-tuning phase.

In House 2, with weak transfer learning (100% bags labelled), performance
increases compared to the one before fine-tuning (0% bags labelled) for dish-
washer, but drops for kettle and washing machine due to over-fitting. However,
for kettle, with AL when maximising uncertainty over appliances, performance
increase is achieved at optimal AL point with 13.3% bags labelled, and when av-
eraging uncertainty over appliances, performance increases with labelling 20%
of bags, reducing labelling effort by 86.7% and 80% respectively. For wash-
ing machine, labelling 6.7% of bags retains performance whether uncertainty
is maximised or averaged over appliances. For dishwasher, performance is in-
creased at optimal point with only 13.3% of bags labelled with maximising,
and with 6.7% when averaging uncertainty over appliances. Micro Fi-score is
retained in all AL cases.

This situation is a consequence of different appliance signature characteristics
- a kettle activation, as a short duration appliance, is more likely to be present in
bags with other activations from other devices, and hence needs more queries to
augment its learning to see sufficient kettle activations with different aggregates.
Washing machine is likely to be confused with dishwasher and, hence, in the
absence of strong labels its performance cannot be improved, especially for the
low-power state. For dishwasher, there are more high power samples in one
activation and, therefore, with more training samples in the weak labels, it is
possible to improve.
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Table 8.4.: Results - pre-training Scenario 1. Results of the proposed approach
are shown in the following format: metric (% of activation samples
added to fine-tuning dataset).

\ Method [ KE [ MW [ WM [ DW [ Fi-micro
No Fine-Tuning [3] 0.73 - 0.62 0.70 0.67
Weak Transfer Learning [3] 0.59 - 0.42 0.73 0.58
Proposed
(max uncertainty)
- optimal point 0.74 (13.3%) - 0.62 (6.7%) | 0.71 (13.3%) | 0.67 (6.7%)
Proposed
(max uncertainty)
H2 - best F} 0.79 (73.3%) - 0.62 (6.7%) | 0.74 (33.3%) | 0.67 (6.7%)
Proposed
(mean uncertainty)
- optimal point 0.80 (20%) - 0.62 (6.7%) 0.71 (6.7%) 0.67 (6.7%)
Proposed
(mean uncertainty)
- best Fy 0.80 (20%) - 0.62 (6.7%) 0.73 (20%) 0.67 (6.7%)
No Fine-Tuning [3] 0.54 0.53 - - 0.53
Weak Transfer Learning [3] 0.59 0.65 - - 0.63
Proposed
(max uncertainty)
- optimal point 0.61(1.7%) 0.64 (1.7%) - - 0.63 (1.7%)
Proposed
(max uncertainty)
H4 - best Fy 0.61 (1.7%) | 0.72 (67.2%) - - 0.65 (67.2%)
Proposed
(mean uncertainty)
- optimal point 0.58 (8.8%) | 0.63 (10.5%) - - 0.61 (10.5%)
Proposed
(mean uncertainty)
- best F 0.60 (52.6%) | 0.70 (66.7%) - - 0.65 (66.7%)
No Fine-Tuning [3] 0.78 - 0.24 0.28 0.51
Weak Transfer Learning [3] 0.79 - 0.32 0.28 0.55
Proposed
(max uncertainty)
- optimal point 0.80 (2.2%) - 0.30 (6.5 %) | 0.27 (10.7 %) | 0.56 (10.7 %)
Proposed
(max uncertainty)
5 - best Fy 0.80 (2.2 %) - 0.36 (95.6 %) | 0.28 (50 %) | 0.57 (54.3 %)
Proposed
(mean uncertainty)
- optimal point 0.80 (2.2 %) - 0.34 (261 %) | 0.28 (4.3 %) | 0.56 (6.5 %)
Proposed
(mean uncertainty)
- best I} 0.80 (2.2 %) - 0.34 (261 %) | 0.29 (522 %) | 0.56 (6.5 %)
No Fine-Tuning [3] 0.66 0.68 - - 0.67
Weak Transfer Learning [3] 0.75 0.69 - - 0.71
Proposed
(max uncertainty)
- optimal point 0.80 (3.1 %) | 0.70 (1.5 %) - - 0.73 (1.5 %)
Proposed
(max uncertainty)
H19 - best Fy 0.81 (64.6 %) | 0.71 (29.2 %) - - 0.73 (1.5 %)
Proposed
(mean uncertainty)
- optimal point 0.78 (2.7 %) | 0.70 (8.1 %) - - 0.73 (2.7 %)
Proposed
(mean uncertainty)
~best F 0.79 (13.5 %) | 0.71 (27 %) - - 0.74 (13.5 %)
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Table 8.5.: Results - pre-training Scenario 2. Results of the proposed approach
are shown in the following format: metric (% of activation samples
added to fine-tuning dataset).

[ Method [ KE MW WM DW [ Fi-micro
No Fine-Tuning [3] 0.78 - 0.78 0.84 0.82
Weak Transfer Learning [3] 0.83 - 0.82 0.83 0.82
Proposed
(max uncertainty)
- - optimal point 0.82 (6.7%) - 0.80 (6.7%) | 0.83 (6.7%) | 0.82 (6.7%)
Proposed
(max uncertainty)
- best F, 0.83 (13.33%) - 0.82 (46.7%) | 0.84 (93.3%) | 0.82 (6.7%)
Proposed
(mean uncertainty)
- optimal point 0.83 (6.7%) - 0.80 (6.7%) | 0.83 (6.7%) | 0.82 (6.7%)
Proposed
(mean uncertainty)
- best Fy 0.84 (86.7%) - 0.82 (26.7%) | 0.84 (33.3%) | 0.83 (66.7%)
No Fine-Tuning [3] 0.71 0.69 - - 0.69
Weak Transfer Learning [3] 0.73 0.73 - - 0.73
Proposed
(max uncertainty)
4 i)optimau(li point 0.76 (6.9%) 0.84 (5.2%) - - 0.81 (5.2%)
Topose
(max uncertainty)
- best Fy 0.77 (14%) | 0.86 (73.7%) - - 0.81 (5.2%)
Proposed
(mean uncertainty)
- optimal point 0.78 (1.7%) 0.85 (1.7%) - - 0.83 (1.7%)
Proposed
(mean uncertainty)
- best I} 0.78 (1.7%) | 0.86 (28.1%) - - 0.83 (1.7%)
No Fine-Tuning [3] 0.94 - 0.20 0.43 0.60
Weak Transfer Learning [3] 0.95 - 0.41 0.55 0.70
Proposed
(max uncertainty)
i - optimal point 0.96 (4.3%) - 0.41 (26.1%) | 0.54 (17.4%) | 0.69 (17.4%)
. Proposed
(max uncertainty)
- best Fy 0.96 (4.3 %) - 0.42 (76.1%) | 0.57 (60.9%) | 0.72 (65.2%)
Proposed
(mean uncertainty)
- optimal point 0.96 (2.2 %) - 0.36 (28.3 %) | 0.51 (2.2 %) 0.67 (2.2%)
Proposed
(mean uncertainty)
- best I} 0.96 (2.1 %) - 0.40 (39.1 %) | 0.58 (28.3 %) | 0.71 (28.3 %)
No Fine-Tuning [3] 0.88 0.75 - - 0.80
Weak Transfer Learning [3] 0.76 0.69 - - 0.71
Proposed
(max uncertainty)
- optimal point 0.91 (7.7 %) | 0.73 (1.5 %) - - 0.78 (1.5 %)
Proposed
(max uncertainty)
H19 - best Fy 0.94 (723 %) | 0.73 (1.5 %) - - 0.78 (1.5 %)
Proposed

(mean uncertainty)
- optimal point
Proposed

(mean uncertainty)

- best Fy

0.89 (4.6 %)

0.89 (4.6 %)

0.76 (7.7 %)

0.76 (7.7 %)

- 0.80 (1.5 %)

- 0.81 (7.7 %)
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In House 4, weak transfer learning (100% bags labelled) increases perfor-
mance for both kettle and microwave, as well as the micro Fj-score. With
weak AL, for kettle, at optimal point, performance increase is achieved with
1.7% and 8.8% bags labelled when maximising and averaging uncertainty over
appliances, respectively, reducing labelling effort by 98.3% and 92.2%. For mi-
crowave, at optimal point performance is increased with 1.7% and 10.5% bags
labelled when maximising and averaging uncertainty over appliances, respec-
tively. Micro Fi-score increased at optimal points with only 1.7% and 10.5%
bags labelled when maximising and averaging uncertainty over appliances, re-
spectively.

Considering best Fj-score, kettle needs 52% additional samples for fine-
tuning when considering mean uncertainty across appliances but only 1.7%
more when considering maximum uncertainty. This is due to the fact that
House 4 is much noisier in terms of unknown appliances present in the aggre-
gate signal - it has noise to aggregate ratio (NAR [111]) of 0.91, with noise
calculated as in [3], compared to the NAR value of house 2 which is 0.79. Mi-
crowave needs more additional samples due to its short activation time and
high probability of activation in presence of other appliances, hence, the model
requires more weakly labelled bags to improve.

In house 5, performance is poor before fine-tuning for washing machine and
dishwasher. However, overall performance, as well as per-appliance perfor-
mance, does improve (or remains the same for the dishwasher) with weak trans-
fer learning (100% bags labelled), and also with weak AL with reduced amount
of labelled data. With weak AL, the amount of data that needs labelling in-
creases from 2.2 to 10.7 % when maximising uncertainty across appliances, and
from 2.2 to 26.1 % when averaging, at optimal points. At best Fj-score, wash-
ing machine and dishwasher need significantly larger portion of labelled data,
due to poor performance in the beginning. Consequently, micro F}-score also
peaks at higher percentage of data labelled. House 5 is noisier than House 2
as indicated by a NAR value of 0.84, but lower than House 4, hence it exhibits
a good performance for kettle, but washing machine and dishwasher have more
complex patterns which are different from device to device, so it is hard to
improve them significantly with weak labels only for this house.

In House 19, performance improves with AL exceeding the performance of
weak fine-tuning (100 % bags labelled), requiring only 1.5 - 3.2 % of bags to be
weakly labelled when maximising, and 2.7 to 8.1 % when averaging uncertainty
across appliances, at optimal points. NAR value of House 19 is the highest
among all test houses - 0.93, but starting performance before any fine-tuning
is good, which indicates that this domain has more similarities with training
data than previous testing domains.

Table 8.5 shows results where strong and weak labels are used in the pre-
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training phase - pre-training scenario 2, and weak labels are used in the AL
phase. This scenario is more favourable compared to the previous one, because
even though only weak labels are available during fine-tuning phase, strong
labels are available in the pre-training phase.

Compared to Scenario 1, as expected, performance for all appliances in all
houses is improved over the baseline [3] with significantly less additional fine-
tuning data. This behaviour can be attributed to the inclusion of strong la-
bels during the pre-training phase, which increased the network’s knowledge,
thereby necessitating a lesser quantity of data to achieve comparable or im-
proved results.

Next, levels of uncertainty observed at the start of the AL process are dis-
cussed. In Scenario 1, weak labels only are present in the pre-training phase,
and the model tends to be either overconfident or very unconfident (as shown
by the uncertainty histogram in Fig. 8.2 (top) - most of bags have low un-
certainty values - and lower uncertainty means higher confidence), and the
performance before fine-tuning is not as good as with strong labels present
(Scenario 2). On the other hand, when strong labels are present in the pre-
training phase (Scenario 2), performance before fine-tuning is better, but there
are not as many low uncertainty (high confidence) bags as in Scenario 1 (as
shown in Figure 8.2). The model has been shown strong labels, hence better
performance, but is also more uncertain (i.e., histogram is more flat) due to
learning from strong labels with overlapping activations of multiple appliances
contained in a bag. It is also worth noting that more high uncertainty bags are
observed for kettle than for microwave. Uncertainty levels among bags that are
queried for REFIT house 4 in each experimental scenario are shown in Figure
8.3: Scenario 1 with mean uncertainty across appliances — upper left; Scenario
1 with maximum uncertainty across appliances — upper right; Scenario 2 with
mean uncertainty across appliances - lower left; and Scenario 2 with maximum
uncertainty across appliances — lower right. The figures show uncertainty level
of microwave (orange) stacked to uncertainty level of kettle (blue) for each bag
queried in the beginning of the AL process, before any fine tuning. In case of
using maximum uncertainty across appliances as overall uncertainty measure,
the model tends to pick bags in which uncertainty is high for kettle, but not
necessarily for microwave — according to histograms in Figure 8.2, kettle has
more high uncertainty bags in general. On the other hand, if using mean uncer-
tainty across appliances as overall uncertainty measure, bags are picked so that
both appliances have high uncertainty. Therefore, as described in Section 4.3,
querying based on mean uncertainty is more reliable and gives better overall
improvement of the model.

From both Tables 8.4 and 8.5, it can be observed that with proposed optimal
point (Eq 8.6), performance improvement (House 2: 1.2%, House 4: 14%, House
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Figure 8.2.: Observed uncertainty levels in Scenario 1 (top) and Scenario 2
(bottom) for the whole query pool of House 4 bags.
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Figure 8.3.: Observed ratio of uncertainty between kettle and microwave in
Scenarios 1 (top) and 2 (bottom), when using mean (left) and
maximum (right) uncertainty across present appliances.

5: 2.9%, House 19: 14%), for both acquisition functions, is almost the same as
best F1 performance, with significantly less additional fine-tuning data.

AL curve with optimal points marked obtained in House 4 with mean un-
certainty over appliances is shown in Figure 8.4. In the beginning of the AL
process, useful bags are chosen in the first couple of iterations, after which
performance becomes steady for kettle, and improves further for microwave.

From the presented results, it is evident that sometimes adding less data is
better than adding more, because not all data samples are useful, and not all
data samples do improve the pre-trained model. Therefore, AL approaches can
be used to select only high-uncertainty data and label and add only them to
fine-tuning dataset. An important note is that weak labels only can be used
throughout the AL process, and model performance can still improve. This
is very encouraging, especially bearing in mind that weak labels are easily
obtained, and that they could be obtained even from lay users, who do not
have any knowledge of NILM and appliance signatures - weak labels could be
inferred by only asking users when did they run specific device.
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Figure 8.4.: AL curve obtained at REFIT House 4 in Scenario 2 when averaging
uncertainty across present appliances. Original curve is smoothed
using Savitsky-Golay filter of length 11 and order 3.

8.5.3. Complexity Details

In this section, a brief discussion on the complexity of the proposed approach
is provided. It is worth noting that this framework is primarily designed for
data efficiency without compromising performance, but the method itself does
not focus on reducing computational complexity.

In each AL iteration, there are two phases that require significant computa-
tional resources: acquisition and fine-tuning phase. In the acquisition phase,
the model needs to examine all signal bags belonging to the query pool and
rank them by uncertainty, which has a complexity of O(n?). The cost of this
step reduces as the AL process progresses because the size of the query pool
decreases. The fine-tuning phase then uses acquired signal segments to fine-
tune the model. The cost of this increases as the AL process progresses because
the fine-tuning set size increases as newly queried signal segments are added.
The CRNN model used in this paper consumes 976.28 kB of memory and has
1,100,847,745 FLOPs.
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Chapter 9.

Discussion

The methods introduced in this chapter have progressively enhanced the user’s
role in the annotation process, leading to a reduction in the amount of data
that needs to be annotated for an effective monitoring. Initially, 110,422 bags
of aggregate power signals were used as described in Chapter 5. However, with
the application of weakly supervised transfer learning in Chapter 7, the number
of bags was reduced to 7,635, which is a decrease of 93.08% from the initial set.

By further applying active learning guided by weak supervision (Chapter 8),
the number of required annotated bags was reduced to 811 for four houses,
marking a reduction of 89.37% compared to the weakly supervised transfer
learning. It is worth noting that the annotation period for each of the houses
can extend up to 36 days to achieve the reported performance.

In terms of performance, measured by the Fj-micro score, the initial network
achieved a score of 47% when the dataset was mixed and tested on REFIT. The
performance improved to 71% with the application of transfer learning. Finally,
by selecting the most informative window in the active learning procedure, the
average reported score increased to 78%.

In Figure 9.1, the scatter plot summarizes the number of annotated bags
and the related performance for each methodology. "W" indicates the ap-
proach presented in Chapter 5 ([2]), "W-TL" indicates the approach presented
in Chapter 7 ([3]), and "W-AL" indicates the approach proposed in Chapter 8
([4]). The active learning based method, that collects both weak supervision
and transfer learning, is the best both in terms of performance and in reducing
the annotation effort.

In this part of the thesis, the proposed methodologies led NILM towards a
user-centric view, where the developed strategies obtained good performance
while considering the figure of the user and its role. The final result is a
NILM approach that can perform correctly by using a bit more of one month
of annotated data provided by the user.

Future works can include powerful tools to select the most significant bags.
Explainability tools [112] can be involved to extract deep information from the
unlabeled bags. Also, new re-training strategies can be considered to reduce
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Figure 9.1.: Scatter plot for number of annotated bags vs performance ex-

pressed in terms of Fj-micro. "W": Chapter 5 ([2]), "W-TL"
Chapter 7 ([3]), and "W-AL": Chapter 8 ([4]).

the training complexity of each iteration.
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Part IlII.

Low-Complexity NILM
Methods
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The third contribution of this thesis, discussed in Chapter 2,
will be presented in this part. NILM service should provide a
real-time monitoring feedback, and it is fundamental to pre-
serve the privacy of the users. These features can not be guar-
anteed by services installed on the cloud servers.

As it will be presented in Chapter 10, most of the current
NILM state-of-the-art rely on powerful hardware due to the
complexity of the approaches. Thus, to move the computation
closer to the wusers, lower complexity approaches have to be
developed.

A new distillation strategy based on weak labels is proposed
in Chapter 11 to reduce the complexity in terms of number
of parameters and floating point operations of the NILM ap-
proaches presented in the previous part of this thesis. The re-
sults demonstrate that reducing the architecture does not com-
promise performance, and in several cases performance are
also improved.

Subsequently, based on a consistency analysis between the
Teacher and Student networks, an explainability-based distil-
lation strategy is proposed with effective performance in Chap-
ter 12.

Then, the possibility to embed a new task (such as the moni-
toring of a new appliance) in a deployed network is considered
to mimic a real scenario. In Chapter 13, a method is proposed
that minimizes the number of parameters introduced. This
method utilizes knowledge distillation to maintain the knowl-
edge acquired from previous tasks. An advanced layer selection
strategy is proposed, resulting in improved performance.

An overall discussion of this part is presented in Chapter 14.
The results shown that both when reducing the complexity of a
network or when introducing a new task with the minimum of
complexity, the proposed approaches demonstrate to be solid.
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Chapter 10.

Introduction

Supervised approaches require large datasets and typically utilize deep net-
works with millions of weights. These algorithms are developed using high-
resource hardware. However, the spread of devices in human-daily life has
offered the possibility to move some computations on the edge of the network,
where these devices act. This means that the computation is closer to the user,
preventing annoying service malfunctioning, preserving privacy, and reducing
latency. But this means that the devices that should incorporate the service
have limited computational resources. If the service is provided on the cloud, is-
sues related to data transmission, privacy, and response latency can frequently
occur. For instance, a Non-Intrusive Load Monitoring (NILM) method may
be required in real-time to identify any irregularities in the usage patterns of
one or more appliances. Additionally, the speed of data transmission can be
affected by the resolution of the data being processed, making it susceptible
to delays and interruptions. From a privacy perspective, initial insights into
consumption patterns can indicate whether people are present in a building. A
more detailed analysis could potentially uncover private aspects of the users’
habits.

Since smart meter data are collected near the user, a local computation can
improve NILM service performance. To address this, several strategies for com-
plexity reduction have been proposed in the literature. Complexity reduction
generally refers to the reduction of the number of trainable and non-trainable
parameters that need to be saved after training and used in the prediction
phase. It also refers to the reduction of the Floating Points Operations (FLOPs)
required to produce the predictions.

Complexity reduction can be handled following two ways: the first consists
in designing a large network and then apply model reduction strategies; the
other consists in directly designing a lightweight architecture. In NILM, most
of the works approached the problem by using a posteriori complexity reduction
methodology.

Approaches for complexity reduction in NILM have primarily focused on
neurons and filters pruning [113, 114, 115, 116], tensor decomposition [113],

101



“output” — 2024/5/8 — 10:11 — page 102 — #128

Chapter 10. Introduction

and coefficient quantisation [117, 116]. In [113], filters are pruned based on
their importance defined by L-norms and the change in the loss value caused by
removing a specific filter and using the L1-norm. The same criteria have been
adopted to prune the neurons. After pruning, the model is re-trained one or
more times on a subset of training data, based on the adopted pruning strategy
to recover possible decrease in performance. In [114], pruning techniques are
used to reduce the complexity of a large Sequence-to-Point model [118] in a
federated learning framework. The authors also addressed transfer learning
by using unlabelled data from the target domain. Barber et al. [115] propose
two ways to reduce the complexity of the Sequence-to-Point CNN network,
using dropout and a smaller number of CNN filters and applying pruning on
the learned weights. Particularly, four types of pruning approaches have been
evaluated and the magnitude-based approach, implemented in the TensorFlow
Model Optimization toolkit, was found to be the best compromise between
reduction and accuracy of the model.

Federated learning for NILM has been introduced in [114, 54]. This learning
model involves training on local devices using local data, and the model pa-
rameters are then sent to a central server to learn a global model. In FedNILM
[114], the global model is fine-tuned on unseen and unlabeled measurements
after pruning and network optimisation. In [54], a framework that merges fed-
erated learning and meta-learning is proposed, where a set of meta-learned
models is locally trained using metering data from residential communities.

In [117], a post-training MobileNet compression is proposed, which reduces
the model size and inference time using the TensorFlow Lite tool for quanti-
sation, reducing the precision from 32-bit to 8-bit. Peng and colleagues [71]
introduced a framework based on KD to achieve a Multi-Layer Perceptron net-
work. A similar approach was used in [119], where KD was used to derive a
CNN from an ensemble of convolutional networks, each with higher complex-
ity. The task addressed here is multi-class single-label classification, meaning
only one appliance is assumed to be active at each time instant. Conversely,
in [120], the authors directly designed a lightweight CNN architecture suitable
for deployment on edge devices.

Sykiotis and colleagues [116] presented an edge optimisation framework that
incrementally applies coefficient quantisation and pruning to reduce the model’s
complexity until the specified performance and edge deployment requirements
are met.

Most of the literature reviewed focuses on reducing complexity for power
profile reconstruction [113, 114, 115, 116, 117]. However, only a few works
consider the performance decline on unseen target domains and the associated
transfer learning methods to mitigate it [114, 120]. This issue is crucial in
practice as the data from the source domain used for network training often
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differ statistically from the target domain data processed when the network is
deployed in the final environment. Factors such as appliance types, measure-
ment equipment, and building size can contribute to this statistical difference.
Recent literature demonstrates that this mismatch between training and test-
ing domains results in poor performance, necessitating transfer learning for
satisfactory results [106, 54].

In [106], the authors transfer features extracted by the CNN layers of the
Sequence-to-Point network across appliances and households in different regions
and fine-tune the regression layer. In contrast, [54] combines federated learn-
ing and meta-learning, where a set of meta-learned models are locally trained
using metering data from residential communities. Notably, neither [106] nor
[54] propose a complexity reduction method and both deal with power profile
reconstruction.

In the complexity reduction literature, only [120] has evaluated the method
in a data domain different from the training one, and only [114] has addressed
transfer learning. Both papers focus on power profile reconstruction, i.e., the
regression task.

It is worth noting that Luan and colleagues [120] developed a lightweight
architecture from scratch, eliminating the need for parameter reduction.

As referenced in Section 2.5, this chapter presents the third contribution of
this thesis. It compiles innovative techniques for NILM, focusing on reducing
complexity in transfer learning scenarios.

In Chapter 11, a new distillation method is introduced to decrease the com-
plexity of the CRNN, both in terms of parameters and FLOPs. This method
leverages weak supervision and fine-tuning to maintain or even enhance per-
formance while reducing complexity.

An improvement of this work is proposed in Chapter 12, where the explain-
ability technique is included in the distillation process to reduce the inconsis-
tencies among the teacher and the student behaviour during the training, while
reducing the complexity.

Following that, in Chapter 13, a continual learning strategy based on dis-
tillation is implemented for transfer learning. This strategy introduces a new
task while using the fewest possible parameters.
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Chapter 11.

Knowledge Distillation for Scalable
Non-Intrusive Load Monitoring

This chapter offers an in-depth explanation of a novel Knowledge Distillation
(KD) strategy for multi-label appliance NILM, as first introduced and published
in [121].

This method employs KD and weak supervision to reduce the computational
load a neural network for multi-label appliance classification. KD facilitates
the transfer of knowledge from a larger 'teacher’ network to a smaller ’student’
network by training the latter with soft labels derived from the former [70, 122].
To enhance KD and ensure scalability of the proposed solution, both transfer
learning and complexity reduction are necessary.

Transfer learning typically involves gathering new data directly from the
target environment to fine-tune pre-trained models, which necessitates user
involvement for data annotation. This process is simplified by weak supervi-
sion. Prior research has shown the effectiveness of weak labels in enhancing
performance in both disaggregation [103] and multi-label appliance classifica-
tion tasks [2, 3]. This study suggests using weak labels to simultaneously distil
knowledge and reduce network complexity during transfer learning.

The method employs the CRNN presented in the above sections, since it
has proven successful in a centralised NILM scenario [2, 3]. The experiments
presented in the study feature several networks with reduced complexity that
maintain the core components of the initial model, and explore the balance
between accuracy and complexity.

11.1. Proposed Methodology

Figure 11.1 shows the proposed KD framework. Two learning phases, Pre-
training and Fine-tuning, are performed on the Teacher network and one, Dis-
tillation, on the Student. The Teacher network is initially trained on a large
dataset of active power measurements and the corresponding strong and weak
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Figure 11.1.: Proposed Knowledge Distillation framework for NILM. "GT"
stands for Ground Truth.
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labels {y;,S;,w;} € D; . Then, the network is fine-tuned on a smaller set
{y;,w;} € Dy without any strong labels.

To ensure the practicality of the proposed architecture, all learning phases
are based on weak supervision [123]. That is, it is assumed that only the
large teacher network has access to exact event labels (strong labels) in the
pre-training phase, while the student network is created locally, at the target
environment, with access to weak labels only. For example, the teacher can
be trained using a large public source domain dataset, and fine-tuning is per-
formed using easier-to-collect weak labels from the target domain (collected,
e.g., periodically from the targeted house via an app).

The method is based on a weak supervised distillation approach in which
the network takes as input a series of J disjointed windows of y(t) of size L
and produces as output a series of J disjointed windows of predictions for K
classes: i

S; = [B(L),8(JL+1),...,8(jL + L —1)] € RE*L, (11.1)

where §(¢) € RE*1 contains predictions (on/off) for each of K appliances of
interest at time stamp t.

The distillation process is performed using the teacher-student strategy de-
scribed in [70]. The following sections detail the teacher and the student train-
ing methodology. The final subsection is dedicated to the teacher architecture
and the factors that influence the dimension of the network.

11.1.1. Teacher Learning

The Teacher model implements the function g4(-) with parameters ¢ and it
is initially pre-trained using both strongly and weakly labelled data, i.e., the
dataset D;. The loss function is defined as:

Lyt = Lo + ALy, (11.2)

where the two losses are the Binary Cross-Entropy (BCE) function calculated
on the strong predictions and on the weak predictions, respectively, as Equa-
tion 5.7 and Equation 5.8.

Unlike previous works on distillation [70, 124], before being employed in the
distillation process, the teacher network here is fine-tuned on a subset of data
Dy from the target environment using weak labels only. The fine-tuning loss

107



“output” — 2024/5/8 — 10:11 — page 108 — #134

Chapter 11. Knowledge Distillation for Scalable Non-Intrusive Load Monitoring

Ly, is formulated as the focal loss [125], with + set to 0.2:

K

! > [wm(1 = 1) log(tim)+

L(wj, W;) = e
m=1

(1 — w0, log(1 — )] . (11.3)

Generally, positive and negative samples are highly unbalanced, as the latter
are significantly more represented. Moreover, preliminary experiments on the
validation set showed that the classification of negative samples is significantly
less challenging, with specificity values around 0.99. This, motivated us to
use the focal loss proposed in [125] instead of the binary cross-entropy loss.
The focal loss focuses better on incorrect instances of the underrepresented
class (positive samples in this case), while down-weighting the contribution of
correctly classified samples related to the mostly represented class (negative
samples in this case). In this way, the loss helps the Teacher in learning about
the target domain data available before distillation, particularly when using
the coarser information from weak labels. Experimentally, it is verified on the
validation set that using the focal loss reduces the presence of false positive
and negative predictions and increases the true positives depending on the
appliance. All network layers have been fine-tuned since it has been verified on
the validation set that better performance is obtained by re-training the entire
network.

11.1.2. Student Knowledge Distillation

The Student model implements the function f,(-) with parameters a. The
weakly labelled dataset Do exploited to fine-tune the teacher network has also
been employed in the distillation process. Thus, the distillation loss function
is defined as:

zs! zie
Laist = BLsoft (U (%) , 0 (%)) +

where L, is the BCE, as in (Equation 5.7), calculated on the soft outputs of
the student S;t = 0(Z3'/T) and the soft labels from the teacher S;e =o(Z%/T)
with o being the sigmoid function, and th and Z;-e the logits from the Student

+ (1= B)0(e) Lo (W5, wy), (11.4)

and the Teacher, respectively. L,, is the BCE computed on the weak predictions
Wi of the student and w; the weak ground-truth, as in (5.8). 6(e) is a dynamic
weight that balances the magnitude of the two losses based on the following
formula f(e) = 10-¢(), where G(e) is obtained by G(e) = log,,(Lw(e)) —
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Algorithm 3 Pseudo-code for the Student distillation process.

Require: Datasets Dy and Dy, Teacher g¢(-) pre-trained on D; and fine-
tuned on Ds, Student fo(-), 6(-) function to balance losses magnitude.
for e in epochs do

for each minibatch B do
S + go(vjen):
SjteBaVAV‘;‘teB — fg()ﬁ‘E?);
Laist = BLsopt(S3tp, Siep) + (1 — 8)0(e) Lu(Witp, Wicn);
Update a using Adam Optimiser to minimise Lg;s; loss.
end for
end for

logio(Lsosi(€)), e is the training epoch, and L, (e) and L, (e) are the total
losses for epoch e. [ balances the contribution of the teacher knowledge and
the weak ground-truth to guide the training process. T is the temperature
parameter used to soften teacher predictions [70]. 8 and T have been defined
for each network architecture experimentally, based on the performance on the
validation set. Figure 3 shows the pseudo-code for the Student distillation
process.

11.1.3. Neural Network Architectures

The Teacher network is based on a CRNN, initially used in [2]. For the sake of
clarity, the network structure is illustrated again here because in this section
the focus is primarily on the architecture complexity. The network is composed
of H = 3 convolutional blocks, each containing a convolutional layer with
F - H filters (F = 32), with kernel size equal to k. = 5, a batch normalisation
layer, a Rectified Linear Unit (ReLU) activation and a dropout layer with
probability equal to 0.1. The stride d is 1 and the padding modality is “same”.
The recurrent subpart is composed of a bidirectional Gated Recurrent Units
(GRUs) layer, with 64 units (U). The final part of the network is composed of
a dense layer with K neurons followed by a sigmoid activation function that
produces the appliances’ state sample-by-sample. After the dense layer, the
linear softmax pooling layer followed by a sigmoid activation layer, produces
the weak prediction. Linear softmax pooling is chosen over other functions
proposed in the literature as it is shown to reduce the incongruities between
strong and weak labels leading to improved performance [60, 2].

The total number of trainable parameters for the convolutional subpart can
be computed as:

H

Nenn = Z(ked - Fyp1 +1)F, +npn, (11.5)
h=1
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Washing Washer

Kettle Microwave Toaster Machine Dishwasher Dryer
Mean Mean Mean Mean Mean Mean
Dataset Power | Duration | Power | Duration | Power | Duration | Power | Duration | Power | Duration | Power | Duration
UK-DALE | 1968 2.15 969 1.9 1437 3.38 512 85.8 802 106 504 85
REFIT 2066 2.4 961 2.5 1148 1.9 301 91.8 598 97 1060 304

Table 11.1.: Pre-training sets characteristics. Mean Power (expressed in Watt)
refers to the mean power estimated in a complete activation while
the Duration (expressed in minutes) refers to the length.

with Fj, = F' - h, and ngny = 4F}, that represents the number of parameters
associated to the batch normalisation (2 trainable plus 2 non-trainable). F}_;
is the number of feature maps in the input for the h-th layer while Fj, is the
number of feature maps in the output. When h = 1 the Fj is the dimension of
the input data. Thus, Nonyny mainly depends on the number of convolutional
blocks. The recurrent subpart has a number of parameters Nryny computed
as [126]:

Nenn =2[3(U* + UFy +2U)), (11.6)

where the last term depends on the used framework and is 2U for Keras and
PyTorch. Nryn depends on the number of recurrent units considered U, bi-
ases, and the input dimension Fy. Equations Equation 11.5 and Equation 11.6
indicate that the number of convolutional blocks and the number of recurrent
units are the main factors that increase the total number of parameters and
hence the overall complexity. In this work, several student architectures with
reduced complexities are evaluated in the edge computing direction. The vari-
ous student architectures are presented in Section 11.2.

11.2. Experimental Setup

11.2.1. Dataset

The appliances considered are Kettle (KE), Microwave (MW), Dishwasher
(DW), Washing Machine (WM), Toaster (TOA), and Washer Dryer (WD) since
they are present in most households and also present in most of the houses in
both datasets. A subset of houses from REFIT (2, 4, 8, 9, 15) is used as a
test set from which the set for fine-tuning Ds the Teacher network has been
extracted (30% of the total number of windows). The fine-tuning set is the
same as that used for the distillation of the student.

To evaluate the approach in practical scenarios, two different pre-training
sets D for the Teacher are considered: (i) Houses 5, 6, 7, 10, 12, 13, 16, 17,
18 and 19 of REFIT; (ii) Houses 1, 3, 4, and 5 of UK-DALE. These houses
are selected based on the availability of the six appliances of interest. The
first scenario is to evaluate the method in more favourable conditions when the

110



“output” — 2024/5/8 — 10:11 — page 111 — #137

11.2. Experimental Setup

pre-training domain is similar to the target data domain. The second allows
us to evaluate the method performance when the pre-training and target data
domains are statistically different [127]. The validation sets contain 20% of
data from each training house. Input data are normalised using the mean and
the standard deviation estimated on the pre-training sets.

11.2.2. Hyperparameters

The input sliding window dimension L in the Teacher model is the first hyper-
parameter that influences the distillation process. Table 11.1 shows the du-
ration and average power values for all the appliances of interest. For long-
activation appliances, the window size L is fixed to 4 hours and 15 minutes
(2550 samples) as in [2] (Section 5), where this length is selected to ensure that
a complete activation is contained within a window. Instead, a series of reduced
window lengths is examined for short-activation appliances (around 2-4 min-
utes) after having analysed activations in both pre-training datasets. A total
of four window lengths are identified, equally distributed from 55 minutes (540
samples) to 4 hours and 15 minutes (2550 samples). A minimum time interval
of 55 minutes is chosen as it is appropriate for weak labels annotation. Thus,
the selected window sizes are 55 minutes (540 samples), 2 hours and 2 minutes
(1210 samples), 3 hours and 8 minutes (1880 samples) and 4 hours and 15 min-
utes (2550 samples). A smaller window for short-activation appliances makes
weak labels more effective during the training phase, and multiple activations
inside the same window can be accurately detected. Section 11.3.1 presents a
comparison of the results obtained with windows of different lengths. From a
practical point of view, using the one-hour windows for these appliances is a
reasonable length for accurately assigning weak labels since users are less likely
to remember appliances used within less than one-hour windows confidently.

The parameter 5 in Equation 11.4 has been varied in the range 0.3-0.9 with
a step of 0.2, and T has been tested with values [0.5, 0.7, 0.9, 2]. 5 and T have
been optimised for each student network based on the validation set that has
also been used to find the best threshold to quantise the network predictions.
The learning rate used is 0.002. The number of epochs has been set to 1000,
and early stopping with patience equal to 30 epochs has been used to avoid
over-fitting. The batch size is set to 64.

11.2.3. Architecture Complexity Evaluation

As introduced in Section 11.1.3, to reduce the Student architecture the main
components of the Teacher network are maintained, and change the parameters
of both convolutional and recurrent sub-parts. Firstly, the number of convolu-
tional blocks is reduced and two structures, one with H = 2 and one with H = 1
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Network Nenn | Nenn
Teacher 52486 | 74496
Student 52486 74496

Student 2H-64U | 10880 | 49920
Student 1H-64U 320 37632
Student 1H-32U 320 12672
Student 1H-16U 320 5219

Table 11.2.: Total number of parameters for convolutional and recurrent sub-
parts are reported for the teacher network and each student archi-

tecture.

Network Window size | Classes | FLOPs | Size (KB)

Teacher 56.4 M 551

Student 56.4 M 551
Student 2H-64U 540 3 11.9M 284
Student 1H-64U (55 min) 0.7M 185
Student 1H-32U 0.5 M 85
Student 1H-16U 0.3M 55

Teacher 267.8 M 552

Student 267.8 M 552
Student 2H-64U 2550 6 57.8 M 285
Student 1H-64U | (4h 15 min) 5.1M 186
Student 1H-32U 3.1M 87
Student 1H-16U 2.1M 55

Table 11.3.: Number of FLOPs and sizes of teacher and student networks for
different window lengths (in samples) and number of classes K = 3
and K = 6.

are considered. Then, H = 1 is fixed and start to decrease U by a factor of
2 to further reduce the architecture dimension and computational complexity.
Table 11.2 reports the Nonyn and Ngyn for each architecture while Table 11.3
reports the number of Floating point Operations (FLOPs) and the dimension
of the models to evaluate the reduction in terms of size and runtime [113]. The
Student models are named with the number of H convolutional blocks and
recurrent units U, e.g., Student 2H-64U denotes a student architecture with
H = 2 convolutional blocks and U = 64 units. The model named Student
has the same architecture of the Teacher. As shown in Table 11.3, the window
dimension significantly affects the number of FLOPs.

11.2.4. Benchmark Methods

In the experiments, the proposed method is compared with two existing tech-
niques in the literature that propose complexity reduction for NILM [113, 120]
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and with [2]. None of the works presented in Chapter 10 proposes a com-
plexity reduction approach for multi-label appliance classification. Therefore,
[113, 120] were adapted for this task. EdgeNILM [113] uses pruning and tensor
decomposition applied to [118], and in the experiments the source code made
available by the authors is used to ensure reproducibility. To adapt the network
to multi-label appliance classification, the last layer of the Sequence-to-Point
CNN is modified with a sigmoid function to produce the state probability and
used the BCE loss function during training. As in [113], a separate network
is trained for each appliance and applied the 60% iterative pruning complexity
reduction method because in [113] it produced the average lowest disaggrega-
tion error. A window size of 99 samples was adopted for EdgeNILM for all the
appliances, based on the results presented in [113].

The Lightweight CNN proposed in [120] is based on a model design approach,
and it consists of only two convolutional layers and one dense layer. The
lightweight network was implemented and trained within the same framework
of EdgeNILM for a fair comparison, using a window size of 199 samples [120].
As with EdgeNILM, for this approach, a separate network for each appliance
is trained.

Finally, the proposed method is compared with the initial work proposed in
[2], where the CRNN structure was trained with weakly labelled data. This
method is identified as WL-NILM. In this way, the effectiveness and novelty of
method is demonstrated in terms of complexity-performance improvement also
when compared with an approach that uses a CRNN and weak labels during
training.

The same post-processing applied for proposed method was applied to the
raw predictions of benchmark methods, using a threshold for each network
optimised on the validation set.

11.2.5. Evaluation Metrics

Two metrics have been used to evaluate the proposed approach. The first is
the F-score (F) and the related micro-average already defined in Equation 5.9
and Equation 5.10.

The load estimation is evaluated using the TECA Equation 5.11. The average
power consumed by each appliance has been assigned based on the average
power consumed by the appliances in the training set.

11.3. Results and Discussion

In this section, the window length impact on the Teacher performance is firstly
illustrated. Then, the results obtained by the reduced Student networks are
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KB MW

TOA
Window length (samples): B08540081210 0018808182550 ‘

Figure 11.2.: Window analysis based on the test set: Fi-scores when the
Teacher is pre-trained with REFIT.
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Window length (samples): B1540081210 0018808182550 ‘

Figure 11.3.: Window analysis based on the test set: Fj-scores when the
Teacher is pre-trained with UK-DALE.

provided. Lastly, the comparison with benchmark methods is discussed.

11.3.1. Window Length Impact on Teacher Performance

Teacher performance for Kettle, Microwave, and Toaster are presented to eval-
uate the best window length for classifying short-activation appliances. In this
way, the hypothesis that using a window shorter than the one used in [2] leads
to improved performance is validated. Figures 11.2 and 11.3 report the Teacher
performance after fine-tuning on the target data for different window lengths
for aforementioned appliances when pre-training is performed on REFIT and
UK-DALE, respectively. Although only the results on the test set are reported,
the performance on the validation set reflects the performance on the test set.

Both figures show that the reduced length window of 540 samples enables
more effective detection of the appliances’ states. This is confirmed for both
pre-training set conditions and all the appliances except for the Toaster. The
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Toaster’s performance is affected by the statistical differences in power and
duration between the activations in the pre-training and the test set, leading to
a small drop in an already poor performance. For Microwave, the difference
in duration between activations from different domains is reduced when the
network focuses on a shorter time window.
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Appliances Teacher | Student Student 2H-64U  Student 1H-64U  Student 1H-32U  Student 1H-16U
KE, MW, TOA | 0.827 0.832 0.820 0.828 0.827 0.822
WM, DW, WD | 0.648 0.657 0.656 0.680 0.740 0.644

Table 11.6.: Performance comparison between the Teacher (D;=REFIT) and
the reduced Student networks in terms of TECA. Improved and
equal performance are reported in bold for each Student architec-
ture.

Appliances Teacher | Student Student 2H-64U  Student 1H-64U  Student 1H-32U  Student 1H-16U
KE, MW, TOA | 0.627 0.631 0.608 0.624 0.663 0.642
WM, DW, WD 0.725 0.719 0.713 0.688 0.674 0.669

Table 11.7.: Performance comparison between the Teacher (D;=UK-DALE)
and the reduced Student networks in terms of TECA. Improved
and equal performance are reported in bold for each Student ar-
chitecture.

11.3.2. Student Distillation Results

Table 11.4, Table 11.5 present the results obtained with different student archi-
tectures, compared to the Teacher performance for all the K = 6 appliances.
When using UK-DALE for pre-training, the Student network shows similar
performance to the Teacher network with slight improvement for Kettle, Dish-
washer, and Washing Machine. Similarly, when the Teacher is pre-trained with
REFIT, the results are either improved or similar for Kettle, Toaster, Washing
Machine and Dishwasher. A significant drop in performance is observed only
for Washer Dryer due to low Recall. This is because Washer Dryer activa-
tions in the test set are longer than the activations in REFIT pre-training set
(approximately 82 minutes vs 30 minutes). These statistical differences cause
the network to miss or underestimate more activations, producing more false
negatives. When the Student architecture is reduced, differences between do-
mains become more critical because the network loses the last convolutional
block related to higher-level features. In fact, for the Student 2H-64U network,
Nenn reduces by 79% and Nryny by 33% compared to the Teacher, while
the Fi-score reduces only by 3.4%, on average, due to a decrease in Recall
not compensated by the slight increase in Precision. In contrast, for the same
Student 2H-64U architecture distilled by the Teacher pre-trained on REFIT,
the performance improves for the Toaster, Washing Machine, and Dishwasher,
and remains stable for other appliances, except for Washer Dryer due to low
Recall. In the smaller Student 1H-64U network, Noyny reduces by 99% and
Ngrnyn by 49%, while the Fi-score decreases by 6.8% due to both Recall and
Precision drop after the distillation from the Teacher pre-trained on UK-DALE.
This important reduction of high-level features affects the performance, par-
ticularly for Toaster, Dishwasher, and Washing Machine. Nonetheless, Kettle
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and Microwave are more accurately classified while Washer Dryer maintains
stable performance. When the Teacher is pre-trained on REFIT, the Fi-score
of Student 1H-64U improves by 1.4% on average compared to the Teacher, with
stable performance for Kettle, an improvement for Toaster, Dishwasher, and
Washing Machine, with an exception for Microwave and Washer Dryer that
slightly decrease. In this case, the network produces fewer false activations
compared to the Teacher network, as confirmed by the higher Precision.

The Student 1H-32U (Ngryn reduced by 83%) represents a good compromise
between complexity reduction and performance. This architecture improves
Teacher performance in both pre-training scenarios. This behaviour shows that
this architecture helps to improve Student generalisation ability independently
of the pre-training set characteristics.

For the Student 1H-16U (Ngy n reduced by 93%), the F-score decreases for
appliances with longer activations (26% for Washing Machine, 13% for Dish-
washer, and 1% for Washer Dryer), while Kettle, Microwave, and Toaster have
increased performance, compared to the Teacher pre-trained on UK-DALE.
Particularly, activations of Washing Machine are not well detected while more
false activations have been produced for Dishwasher and Washer Dryer. The
performance indicates that the number of recurring units may be too small
to learn patterns of household appliances with longer activation, when the do-
mains are very different. In fact, the Student 1H-16U distilled from the Teacher
pre-trained on REFIT has good performance for Kettle and longer activations
appliances, like Dishwasher and Washing Machine, while for Microwave and
Washer Dryer, the performance is reduced by 12% and 24%, respectively. It
has to be noted that each reduced Student architecture reports an improvement
for the Washing Machine and Dishwasher, suggesting that when domains are
similar the classification of these appliances is positively influenced by complex-
ity reduction. Conversely, Microwave performance slightly decreases compared
to the Teacher for each student configuration due to the higher presence of false
activations. Washer Dryer and Kettle are more dependent on the structure of
the Student, while Toaster seems to be independent except for the Student 1H-
16U where performance falls to 0%. The same holds when the reduced Student
networks are distilled from a Teacher pre-trained on UK-DALE, mainly due to
Teacher capability.

Due to the differences between the domains and loads characteristics, all
the appliances are more influenced by the Student structure, and performance
varies for each architecture. Nonetheless, Student 1H-32U performs better
than the other structures, with the smallest performance degradation (3% for
UK-DALE pre-training) and highest performance improvement (6% for REFIT
pre-training) with a reduction of 10x in number of parameters, coherently in
both pre-training scenarios. This outcome can be motivated by a good balance
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Table 11.8.: Results in terms of Fj-score of the proposed approach and bench-
mark methods trained with D;=REFIT and tested on REFIT.
Best results are reported in bold.
Appliance
Model KE MW WM DW TOA WD Average
EdgeNILM Unpruned [113] 0.81 0.41 0.19 0.31 0.21 0.41 0.39
EdgeNILM Pruned 60% [113] 0.82  0.29 0.19 0.31 0.11 0.51 0.37

Lightweight CNN [120] 0.74 065 034 062 011 0.32 0.46
WL-NILM [2] 0.74 071 054 043 025 0.02 0.45
Teacher 0.81 093 067 070 051 0.67 0.71
Student 1H-32U 0.80 091 0.77 0.72 0.56 0.73 0.75

between the number of convolutional blocks, that extract only local features,
and the number of recurrent units that take the features as input. The results
in Table 11.6 and Table 11.7 show a comparison between the network structures
in terms of TECA, where long- and short-duration appliances are considered
separately. For appliances with shorter activations, when the Teacher is pre-
trained with UK-DALE, there is a decrease in energy estimation of 3% for
Student 2H-64U and of 0.5% for Student 1H-64U. For other architectures, the
energy is estimated better than the Teacher, or the performance is similar. On
the other hand, the TECA for long-activation appliances progressively reduces
with the Student architecture reduction due to the slight progressive degrada-
tion of either Precision and Recall, especially for Student 1H-16U, for which
the activations are underestimated for Washing Machine and overestimated for
the Dishwasher. This result shows the variability of performance depending
on the Student structure for long-activation appliances influenced by the appli-
ances’ characteristics that are very different between the two domains in terms
of power values and duration. With shallow architectures, transfer learning
process does not sufficiently improve the model. When the pre-training is per-
formed with REFIT, the TECA is either similar or improved for long-activation
appliances, because of data statistical similarity between the source and tar-
get environment in this case, except for Washer Dryer. The same holds for
short-activation appliances, with a decrease of only 0.8%.

In summary, in the same domain the proposed method reduces the com-
plexity and improves the performance. When domains are different, the per-
formance is similar but the complexity is significantly reduced. The proposed
method reduces the complexity and maintain acceptable performance, reduc-
ing, in the best case, 86x the FLOPs, and 10x the number of parameters.
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Table 11.9.: Results in terms of Fj-score of the proposed approach and bench-
mark methods trained with D{=UK-DALE and tested on REFIT.
Best results are reported in bold.

Appliance
Model KE MW WM DW TOA WD Average
EdgeNILM Unpruned [113] 064 001 043 0.19 0.02 0.23 0.25

EdgeNILM Pruned 60% [113] 0.68  0.03 - 0.07  0.02 - 0.13
Lightweight CNN [120] 0.75 0.33 051 053 0.06 0.42 0.43
WL-NILM [2] 0.73 007 0.10 044 004 0.14 0.26
Teacher 0.70  0.72 0.62 0.62 0.07 0.68 0.59

Student 1H-32U 0.73 0.75 0.63 0.55 0.0 0.78 0.57

11.3.3. Comparison with Benchmark Methods

Table 11.8 and Table 11.9 report the results of the proposed method compared
to benchmark approaches. For EdgeNILM the results of the model before
pruning are reported, and the Teacher performance are included to facilitate
evaluation and comparison the methods.

In both pre-training domains, the proposed approach outperforms the bench-
mark methods on average and for almost all the appliances. The Kettle is the
only exception, where the Lightweight CNN and pruned EdgeNILM achieve
slightly better Fj-score, respectively, when trained using the UK-DALE and
REFIT datasets.

Pruning improved the performance of EdgeNILM on the Kettle and Washer
Dryer appliances when pre-trained with D;=REFIT, but the performance of
the other appliances remained relatively stable. On average, the performance
of EdgeNILM Pruned 60% are worse than EdgeNILM Unpruned.

Lightweight CNN demonstrated better performance on average for all the
appliances compared to EdgeNILM, in particular for Microwave, Washing Ma-
chine, and Dishwasher. Instead, compared to WL-NILM, Lightweight CNN

Table 11.10.: Model Size (MB) and FLOPS (M) for the benchmark methods
and the proposed approach. The model size and the number of
FLOPs are calculated on all the networks used to classify K =6

appliances.

Model Size (MB) FLOPS (M)

EdgeNILM Unpruned [113] 82.92 38.54

EdgeNILM Pruned 60% [113] 13.38 6.28

Lightweight CNN [120] 12.78 6.12

WL-NILM [2] 0.55 267.8

Teacher 1.10 324.2

Student 1H-32U 0.172 3.6

121



“output” — 2024/5/8 — 10:11 — page 122 — #148

Chapter 11. Knowledge Distillation for Scalable Non-Intrusive Load Monitoring

EdgeNILM Unpruned

350 4 EdgeNILM Pruned 60%
LightweightCNN
325 1 WL-NILM
Teacher
300 - Student 1H-32U
~
E 275 1 O
U 250
o
9 225 -
L
200/
O
25 A
ol @ @
T T T T 2 A
0 5 10 15 20 80
Size (MB)

Figure 11.4.: Complexity-Performance comparison among benchmark methods
and the proposed method. For each approach the dimension of the
circle is proportional to the mean Fj-score of both D; scenarios.
FLOPs are expressed in Millions (M) and Size is expressed in
megabytes (MB).

is less effective for all the appliances except the Washer Dryer. Nonetheless,
the proposed Student network has a higher Fj-score compared to EdgeNILM
Pruned 60%, Lightweight CNN and WL-NILM with an absolute increment of
0.38, 0.29 and 0.30, respectively.

When pre-trained with D;=UK-DALE, the differences among domains has
a greater impact on EdgeNILM and WL-NILM, which show low performance
for all the appliances except the Kettle. In particular, for EdgeNILM Pruned
60%, Washing Machine and Washer Dryer are not reported because the model
was not able to learn with a high pruning percentage. Except for Kettle and
Dishwasher, WL-NILM produces poor results like EdgeNILM for all other ap-
pliance. For Lightweight CNN, performance only slightly decreases with respect
to the other pre-training domain. Also in this domain, proposed approach is
more effective on average, with an absolute increment of 0.44, 0.14, and 0.31, on
EdgeNILM Pruned 60%, Lightweight CNN, and WL-NILM respectively. Par-
ticularly for EdgeNILM and WL-NILM, the absence of transfer learning in
the complexity reduction process largely affects the performance on a different
domain.

Table 11.10 reports the model size and the FLOPs for each approach, consid-
ering the total number of networks involved in the classification of K = 6 ap-
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pliances. It is worth noting that EdgeNILM pruned 60% and Lightweight CNN
have almost the same number of FLOPs and model size, although the lat-
ter approach has shown better performance. Instead, WL-NILM has a higher
number of FLOPs compared to EdgeNILM and Lightweight CNN, with per-
formance that varies depending on the pre-training domain. Nonetheless, the
proposed Student has a number of FLOPs 1.74, 1.7 and 74.4 times smaller
than EdgeNILM Pruned 60%, Lightweight CNN and WL-NILM respectively,
despite using a larger or equal window dimension than the benchmark meth-
ods, a parameter that affects the number of FLOPs (Table 11.3). Note that
the model size of the proposed approach is 78, 74, and 3 times smaller than
the benchmarks, while reporting superior performance. Considering both, the
complexity of the architecture and the performance, the proposed Student net-
work is more efficient and effective than the benchmark methods in appliance
classification. Figure 11.4 shows a complexity-performance comparison among
the benchmarks and the proposed method, where the circle dimension is pro-
portional to the mean Fj-score computed on both D; pre-training datasets.
WL-NILM and EdgeNILM Unpruned are on the opposite side of the plane, re-
marking that the difference in terms of FLOPs is mainly related to the window
dimension of WL-NILM that is around 25 times wider. On the other hand,
although proposed Student network has the same window dimension, the num-
ber of FLOPs is largely reduced compared to WL-NILM while producing better
predictions. Considering the model size, the same can be highlighted compared
to the other approaches, that present larger sizes with lower performance.

123



“output” — 2024/5/8 — 10:11 — page 124 — #150



“output” — 2024/5/8 — 10:11 — page 125 — #151

Chapter 12.

Improving Knowledge Distillation
through Explainability Guided
Learning

In other application domains, KD has demonstrated effective results in main-
taining the performance of the Teacher network, while facilitating scalability
[128] and preservation of privacy [129]. An important issue that has received
considerable critical attention in deep learning and NILM community is algo-
rithmic transparency [130, 131, 132]. Lack of interpretability brought by the
algorithmic complexity of DNN models has caused many to regard them as
“black-box” algorithms, leading to concerns raised by the scientific community
[133], as well as legislative bodies [134]. This problem has been a focus of
field of explainable AI (XAI), aimed to derive methods for creation of more
trustworthy deep learning systems by providing human-understandable expla-
nations of DNN outputs. Previous studies in this area have sought to propose
techniques for generating visual explanations that highlight the features of the
input which are the most influential for the prediction of a model. A consider-
able volume of literature suggests that such approaches can lead to more trust-
worthy machine learning systems [130, 132, 135, 136, 137]. However, despite
the apparent benefits of introducing XAI in DNN-based NILM systems, most
studies in KD NILM have only focused on domain adaptation and architecture
reduction [138, 139, 121], and little is understood about the mechanism behind
the transfer of knowledge from the Teacher to the Student model. Importantly,
the relationship between the explanations of the Teacher model outputs and
how they relate to explanations of the Student model decisions has not received
any attention in the NILM community.

In this chapter, a methodology that establishes a link between KD and XAI
approaches for NILM is proposed. A KD framework is used to train less com-
plex networks (Students) for each appliance starting from a more complex net-
work (Teacher) trained on a large quantity of samples from different domains.
The Teacher network is a multi-label classifier used to distill the knowledge
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into a binary Student classifier model. By exploiting existing XAI tools, vi-
sual explanations of outputs generated by the components of the KD system
are derived, with the aim of understanding the distillation mechanism. This
information is used to identify the main type of inconsistency w.r.t. transfer
of explanation knowledge. Finally, a method for improvement of predictive
performance of KD NILM algorithms is proposed, by guiding the distillation
process towards correct transfer of explanation knowledge. This work has been
presented and published at the IEEE International Conference on Acoustics,
Speech and Signal Processing in 2023 [112].

12.1. Proposed Methodology

In this section, the KD framework for DNN architecture reduction is illustrated.
Then, the proposed technique to generate the output-related explainability
maps and explainability guided learning to enhance the training process of a
distillation model. The method aims to explain why the Teacher predictions
are produced and exploit this knowledge to improve the training process. Then,
interpretability is included in the training loop.

12.2. Knowledge Distillation

The distillation framework mainly refers to Section 11.1. The architectural
reduction compared to the Teacher is achieved by reducing the number of
convolutional blocks and gated recurrent units in the Student model, leading to
a 6-fold reduction in the number of trainable parameters. The architectures of
Teacher and Student networks considered are shown in Table 12.1. The Teacher
network is pre-trained on a large set of aggregate smart meter load profiles and
then fine-tuned on a smaller set of aggregate signals. The pre-training set is
annotated with sample-by-sample labels (strong labels) and bag-level labels
(weak labels). The networks take as input a series of D disjointed aggregate
windows with dimension L and produce as output two levels of predictions, a
series of D sample-by-sample state predictions &, € R'*L at the strong level
and a series of D window predictions @, € R™! at the weak level. Both
levels are shown in Table 12.1. The pre-training loss at the Teacher network is
formulated as L,; = Ls + ALy, with Ly and L,, being 5.7 and 5.8 for strong
and weak predictions, respectively. Then, the Teacher network is fine-tuned
on a set of mains, annotated only with weak labels and the same set is also
used during the distillation process for the Student network training. Fine-
tuning is performed by re-training the Teacher network with the loss function
defined as Ly = L,,. The distillation loss compares soft Teacher with soft
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Model Layer Activation Filters Kernel Units
Convolutional Block 1 ReLu 32 5 -
Convolutional Block 2 ReLu 64 5 -
Convolutional Block 3 ReLu 128 5 -

Teacher Bidirectional GRUs - - 64
Fully Connected (strong level) Sigmoid - - 5
Linear Softmax Pooling - - - 5
Activation (weak level) Sigmoid - - -
Convolutional Block 1 ReLu 32 5 -
Bidirectional GRUs - - 32

Student  Fully Connected (strong level) Sigmoid - - 5
Linear Softmax Pooling - - - 5
Activation (weak level) Sigmoid - - -

Table 12.1.: Architecture of Teacher and Student models.

Student predictions and weak level predictions with weak ground-truth, and it
is formulated as:

Tt

Lo =5 Lo (7 (5 )0 (3) ) + 0= 9)-000) - Lutisw). - (121)

with o(2s/T) being soft predictions of the Student and o (2, /T) soft labels from
the Teacher, and o being the sigmoid function. 7" is the temperature parameter
used to soften Teacher predictions [70]. #(e) is a dynamic weight that balances
the magnitude of the two losses based on the formula 6(e) = 10~%(¢) where G(e)
is obtained by G(e) = log, (L (€)) —logo(Lsosi(e)) and index e is the training
epoch. Parameter 8 balances the contribution of the Teacher knowledge and the
weak ground-truth. At the end of the distillation process, Student predictions
are quantized to obtain the state of the appliance, by applying a threshold
selected based on the validation set.

12.3. Feature Importance Map Generation

As the need for explainability is becoming an increasingly important step for
integration of Al systems, there has been a strong push towards development
of practical tools that facilitate better understanding of complex, “black-box"
algorithms. In order to incorporate XAI in the NILM KD framework, the
attetion is placed on GradCAM, one of the most cited explainability methods
[140]. GradCAM aims to solve the problem of assigning importance values to
the input features of a DNN algorithm.

Given an input x to a DNN model, and a target concept ¢, the goal is to
map the relevance of each input feature to the target concept, where the target
concept can be represented as a class of interest in the case of classification
tasks. GradCAM operates by computing the gradient w.r.t the final convolu-
tional layer of a CNN network [140]. In order to generate an explanation map
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h¢ € RW*H of width W and height H for a target concept c, the gradient of
the output for the target concept y¢ w.r.t the kth feature map activations A*
of the last convolutional layer is computed, i.e., %. Next, a global average
pooling operation is applied over the height and width dimensions (indexed by
i and j, respectively) on the computed gradients, to obtain neuron importance
weights [140]:

¢ 1 oy°
Wi = ;zj: pAT (12.2)

The generated weights represent the importance of feature map k for the
target concept c¢. In order to compute the explanation map h¢, weighted com-
bination of feature map activations, followed by ReLU function, is performed
[140]:

h¢ = ReLU <Z w,gAk> : (12.3)
k

Note that ReLLU operation ensures that only features with a positive influence
on the target concept are considered.

12.4. Explainability Guided Learning

KD minimizes the divergence between the probability distributions of the Teacher
and Student models [70], with the aim of aligning the logits produced by the
Student with those of the Teacher. This process achieves effective transfer
of knowledge by conditioning the Student model to mimic the outputs of the
Teacher. However, it can observed that KD might not always be successful in
transferring the explainable knowledge of the Teacher. In particular, the main
erroneous case of inconsistency in the explanation knowledge transfer, that is,
given identical inputs, Teacher and Student networks produce dissimilar output
explanations for a given class. This phenomenon is illustrated with an example
in Fig. 12.1 a)-b) in the form of a heatmap, where the highest values correspond
to input features most important for the predictive output of the Washing Ma-
chine class. The distillation process has been unsuccessful in transferring the
magnitudes of most relevant importance values to the Student, possibly causing
the occurrence of a false positive prediction. A reduction of such inconsistencies
might be a crucial step in the optimization of the distillation process, leading
to a more stable predictive performance.

To prevent inconsistencies in the transfer of explainable knowledge, a learn-
ing technique for improvement of knowledge distillation is derived, focusing
on dissimilarities between the Teacher and Student explanations. The distil-
lation process is conditioned to transfer the Teacher behaviour both in terms
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Appliance Scenario o m
. . UK-DALE 0.50 weak
Washing Machine REFIT 0.30 strong
. - UK-DALE 0.85 strong
Dishwasher REFIT 0.70 weak:
A UK-DALE 0.60 weak
Washer-Dryer REFIT 0.30 weak
UK-DALE 0.30 weak
Kettle REFIT 0.70 weak
Micr ] UK-DALE 0.70 weak
ierowave REFIT 0.5 strong

Table 12.2.: Training hyperparameters used for training of Student models for
each of the two domain adaptation scenarios.

of output predictions and output explanations. This mode of learning, here-
inafter explainability guided learning, is achieved through a new distillation loss
function, modified to guide the learning process towards the resolution of ex-
planation inconsistencies. As explanation heatmaps are represented in vector
form, the inconsistency between two explanations are quantified through a loss
function based on a measure of cosine similarity, defined as:

n
Lizai(a,b) = — @ = Lzt a’bzn : (12.4)
llall[[ol Vs ()20 (0:)?

where a and b represent two generated explanations, while p represents the
output type to be compared (weak or strong). It is expected that two similar
vectors will have a similar angle between them, leading to the conclusion that
the similarity of two vectors increases as the value of their cosine angle increases.
To this end, in order to promote the minimization of the loss function, the sign
of the generated cosine similarity measure is inverted.

To alleviate inconsistencies w.r.t transfer of explainable knowledge in KD,
the KD loss function is modified by including the cosine similarity-based loss
between the explanations produced by the Teacher and the Student networks.
Thus, the explainability guided knowledge distillation loss function can be de-
fined as:

Lxgkp = Lkp +7 - L, (hi, h), (12.5)

where h; and hg represent explanations generated by Teacher and Student

networks, respectively, while v represents a parameter that adjusts the impact
“w

Tai*

of the cosine similarity loss component L
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12.5. Experimental setup

12.5.1. Datasets

To validate proposed proposed approach, real-world UK-DALE [24] and REFIT
[25] datasets are used. To evaluate the success of approach in performing
domain adaptation, two different scenarios are used to pre-train the Teacher
network, where training data are taken from 1) UK-DALE houses 1, 3, 4,
and 5 (UK-DALE-to-REFIT scenario) and 2) REFIT houses 5, 6, 7, 10, 12,
13, 16, 17, 18 and 19 (REFIT-to-REFIT scenario). The UK-DALE-to-REFIT
scenario is used to evaluate the performance of the proposed method when
pre-training and target environment domains are different, while the REFIT-
to-REFIT scenario aims to evaluate the performance of the method when the
pre-training domain is similar to the target environment signal domain. The
validation set for each scenario is extracted from the pre-training set, as well
as the mean and standard deviation values used to normalize the input signals.

12.5.2. Training Procedure

The approach is evaluated on five appliances (Washing Machine (WM), Dish-
washer (DW), Washer-Dryer (WD), Kettle (KT), and Microwave (MW)), across
two domain adaptation scenarios (UK-DALE-to-REFIT and REFIT-to-REFIT).
Teacher is trained to perform multi-label classification of an input signal. As
part of distillation framework, the Student model is designed as a binary clas-
sifier with reduced architecture compared to the Teacher so that explainability
guided learning can be focused on explanations for one appliance/class at a
time. Moreover, the model can be used without re-training, even if some of
the five appliances of interest are not present in the target house. Firstly, the
knowledge distillation is performed without explainability guided learning, us-
ing Lip loss defined in Eq. (12.1), to create baseline Student models for each
appliance in the two domain adaptation scenarios. Then, the same process
is repeated with explainability guided learning with a loss function defined in
Eq. (12.5). As each appliance model is sensitive to the choice of p and 7,
the chosen hyperparameters are reported in Table 12.2. Hyperparameters and
thresholds to quantize the predictions have been selected for each model such
that they maximize the performance on the validation set. The input window
dimension is L = 2550 which corresponds to 4h and 15min of measurements.
The batch size is set to 64. Adam optimizer is used with a learning rate of
0.002, and a number of epochs is set to 1000.
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12.6. Results

Standard classification metrics: Recall, Precision, and F1-score, are used for
evaluation as in Section 5.2.3.

Firstly, in Table 12.3, results are presented for the case of domain adaptation
scenario where the Teacher network is trained using UK-DALE, while the Stu-
dent is trained using REFIT (UK-DALE-to-REFIT scenario). The proposed
explainability guided learning led to an increase in performance compared to
the baseline model for all appliances. When comparing with the Teacher model,
there are improvements for all appliances, except for WD, where the F-score
remains unchanged, and KT, where the F-score decreased, but still remained
significantly higher than the baseline model. A possible reason for the poor
performance for KT is the fact that in this case, the Teacher model might
not be ideal for knowledge distillation, as its low recall value suggests that it
exhibits a high number of false negative predictions. Results for the domain
adaptation scenario where both Teacher and Student models were trained using
REFIT data (REFIT-to-REFIT) and tested on unseen houses in REFIT are
shown in Table 12.4. As in the first scenario, improvements are reported in the
performance compared to the baseline and the Teacher, with the exception of
MW, where all three methods provide similar performance. Results presented
in Figure 12.1 suggest that explainability guided learning helps alleviate in-
correct transfer of explanation knowledge, and through this process improves
the predictive performance of the Student model. The results presented in Ta-
bles 12.3 and 12.4 show that the proposed explainability guided learning leads
to improved knowledge distillation for most appliances in both domain adap-
tation scenarios. In the first scenario, there are improvements of the F-Score
measure ranging from 1.6% (for DW) up to 22.6% (for WM) compared to the
baseline, while the improvements over the Teacher model ranged from 0% (for
WD) up to 33.3% (for MW). Similar findings hold for the REFIT-to-REFIT
domain adaptation scenario, where the maximum improvement over the base-
line was 15.6% (for WD), while the maximum improvement over the Teacher
was 25.5% (for DW). Moving from UK-DALE-to-REFIT domain, transferabil-
ity has a strong influence on presence of false positive activations, while this
phenomenon is not impacting the REFIT-to-REFIT scenario as much, and
precision is increased more consistently as a result.
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Appliance Model Precision Recall F1-Score
Teacher 0.56 0.69 0.62
Washing Machine Baseline 0.70 0.43 0.53
Ours 0.55 0.81 0.65
Teacher 0.49 0.84 0.62
Dishwasher Baseline 0.50 0.88 0.63
Ours 0.52 0.83 0.64
Teacher 0.79 0.77 0.78
Washer-Dryer Baseline 0.97 0.52 0.68
Ours 0.75 0.81 0.78
Teacher 0.77 0.42 0.55
Kettle Baseline 0.26 0.98 0.41
Ours 0.31 0.97 0.47
Teacher 0.43 0.98 0.60
Microwave Baseline 0.94 0.52 0.67
Ours 0.69 0.96 0.80

Table 12.3.: Results for the UK-DALE-to-REFIT domain adaptation scenario.

Appliance Model Precision Recall F1-Score
Teacher 0.57 0.91 0.70
Washing Machine Baseline 0.60 0.93 0.73
Ours 0.76 0.82 0.79
Teacher 0.35 0.97 0.51
Dishwasher Baseline 0.42 0.96 0.59
Ours 0.49 0.93 0.64
Teacher 0.93 0.52 0.67
Washer-Dryer Baseline 0.98 0.47 0.64
Ours 0.67 0.82 0.74
Teacher 0.92 0.55 0.69
Kettle Baseline 0.60 0.95 0.73
Ours 0.72 0.79 0.75
Teacher 0.79 0.98 0.87
Microwave Baseline 0.77 0.95 0.85
Ours 0.93 0.77 0.84

Table 12.4.: Results for the REFIT-to-REFIT domain adaptation scenario.
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Power [kW]
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Figure 12.1.: Explanations for prediction of Washing Machine on a sample from
the test set in the REFIT-to-REFIT domain adaptation scenario.
a) Teacher explanation b) baseline Student explanation, display-
ing the inconsistent transfer of explanation knowledge c) Cor-
rected Student explanation and prediction after explainability
guided learning. Strong predictions are displayed before quan-
tization.

133



“output” — 2024/5/8 — 10:11 — page 134 — #160



“output” — 2024/5/8 — 10:11 — page 135 — #161

Chapter 13.

Appliance incremental learning for
Non-Intrusive Load Monitoring

A crucial aspect highlighted in [141] for NILM is the need to develop meth-
ods that can adapt to changes in the target environment and accommodate
new appliances or new features of existing appliances. As largely discussed in
Chapter 7, when there are discrepancies between the source and target data
domains, a NILM approach that does not adjust to the ongoing changes in the
deployment environment may suffer from significant performance degradation
and fail to meet user expectations.

Strategies such as transfer learning [3, 138] and active learning [88] have
been proposed to adapt a pre-trained model to a different data domain and
minimize performance degradation due to differences between the training and
target domains.

Recently, [142] proposed a continual learning approach to handle domain
shift. This approach adapts the model using a limited number of data samples
collected based on a specific selection criterion, and mitigates catastrophic for-
getting by replaying old data during training. However, all these works focus
on adapting a model to new domain characteristics post-deployment, without
altering or adding new tasks, such as monitoring a new appliance.

Adjustments in the number of appliances have only been partially consid-
ered in [143, 144]. Specifically, [143] proposed a method based on a similarity
criterion to identify a new appliance within the aggregate signal, but it did
not focus on adaptation. Similarly, the method in [144] solely concentrates on
detecting the presence of a new device.

The various neural network architectures suggested in the literature for multi-
label appliance classification are all static [48, 2, 49]. This means that the
quantity and type of appliances must be predetermined, and the corresponding
annotated data must be available for model training. However, due to changes
in user habits, this is a practical and unavoidable scenario.

In this chapter, the first work in multi-label appliance classification that sug-
gests a method to incorporate new appliances into an already deployed network
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Deployed Model Adaptation Learning -
— Dynamic Layer
— Distillation Adaptation Learning -
N\  — Dynamic Layer
.’: | Distillation

=
,l

K +V appliances

K appliances

K +V + Q appliances

»

Pre-trained Re-trained Layer for Re-trained Layer for model
Layers model M., My ivig

Figure 13.1.: AIL method scheme for NILM. To introduce a new appliance,
adaptation learning and dynamic layer distillation are applied.
The arrow from the previous to the subsequent model indicates
that adaptation learning is done by using the previous model as
the Teacher in the distillation. In this case, V and @ are equal to
1.

will be described. Furthermore, the method proposed a learning approach to
alleviate catastrophic forgetting while enhancing the performance of new ap-
pliances. This approach employs distillation with a dynamic layer selection
strategy to accomplish this goal. This method has been presented and pub-
lished among the proceedings of the 14th IEEE International Conference on
Communications, Control, and Computing Technologies for Smart Grids 2023
[145].

13.1. Proposed Methodology

Multi-label appliance classification aims to detect the state of K appliances at
the same time, given only the power reading of the mains y(t). The proposed
method considers that K can increase, and J appliances from K can be included
in a subsequent monitoring phase so that K +J is the new number of appliances
to be monitored.
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13.1.1. Neural Network Architecture

Multi-label appliance classification is addressed by using a CRNN, described
in Section 5.1.1. The network model denoted as M}; has trainable parameters
® and the last fully connected layer composed of K neurons. Thus, by adding
J new appliances, the new model will have K + J neurons and will be denoted
as Mg’ - with trainable parameters ©.

The learning part is based on the Knowledge Distillation strategy [70] where
the model M is considered as the Teacher while the new model M2, plays
the role of the Student. proposed approach takes as input a series of disjointed
aggregate windows of dimension L producing a series of disjointed windows of
predictions, for each appliance. Figure 13.1 shows the overall framework and
in the following sections, each part will be described.

13.2. Appliance-Incremental Learning Framework

In real-world scenario, new appliances can be introduced or removed. Also,
already existing appliances can be used more frequently and then there could
rise the necessity to start monitoring this new usage habit. The situation where
appliances are removed is ignored, and the focus is exclusively on integrating the
new appliances classification in the already deployed NILM algorithm, limiting
an eventual performance degradation for the previous learned tasks.

13.2.1. Baseline learning

The model M}(’ is trained by using the Binary Cross-Entropy (BCE) loss esti-
mated on the predictions and the labels about the appliances’ states of activa-
tions. The BCE loss is defined as Equation 5.7 with L equal to the number of
samples in the input windows, and §j(t) the state prediction.

13.2.2. Adaptation learning

The learning strategy adopted to avoid catastrophic forgetting while adapting
the network to monitor new appliances is based on the Teacher-Student knowl-
edge distillation principle [70]. Exploiting the knowledge of the Teacher model
MI‘?, the new model Mg ' is forced to preserve the performance related to the
initial K appliances while learning to classify additional V' appliances. In this
way, exploiting the Teacher knowledge, signals and annotations storage related
to the initial K appliances are avoided. The Student model, ZV[I(T? Ly is initial-
ized with the weights of the Teacher model ]V[f(’ (i.e., initially @ = ®), and V
neurons are added to the final fully connected layer, which are then initialized
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randomly. The distillation loss Ly is defined as the BCE computed on the .M;f
and the MI(?+J models predictions respectively with 85 () and 8y g (¢):

11

K
_ _Efz:l 1 817 (t) log(81.5(t))+ (13.1)
(1

t=
= 8k, (1)) log(1 — 8k, 5(1))];
Note that the loss is calculated only for the first K appliances.
On the other hand, the Student model MI(T? Ly needs to be trained to classify
the new V appliances. Thus, the second component of the loss function is the

BCE computed on the labels collected in the target building just for the new
appliances and the network predictions as follow:

V4K L
Lgew: z Z Z IOg Svs(t))+

(1- Sv( ) 1og(1 — 8y.5(t))]-

(13.2)

The final loss function used to train the new M2, |, model is formulated as:

L%, =al® +(1-a)L®

new

(13.3)

where « is the weight to balance the loss contributions. After calculating
L% 1> proposed method incorporates a layer selection phase to optimize the
best layer parameters and improve adaptation effectiveness. The following
section describes the dynamic layer selection procedure.

13.2.3. Dynamic Layer Selection

Following the idea proposed in [146, 147], there is no investigation on which is
the best layer to be updated based on its performance at the end of the learning
process. Instead, the proposed approach involves selecting the optimal layer
for updating during each training batch. This method is incorporated into the
distillation process to evaluate layer significance for both the previous K and
new appliances J. For this reason, it is defined as Dynamic Layer Distillation
(DLD). Differently from previous works [146, 147], the approach takes into
account the loss value L, , which encompasses the contributions from both
the old and new tasks. In this way, only the layers that are at the same time
less significant for the previous task and more important for the new appliances
are trained. As well, there is no retraining of the layers that hold significant
knowledge from the previous task, minimizing the risk of forgetting previous
knowledge.
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Algorithm 4 Pseudo-code outlining the proposed Dynamic Layer Distillation
(DLD) method.

Require: Teacher Mj; model designed for K appliances, V additional appli-
ances
O — &;
for e in epochs do
for each minibatch B do
Calculate L% ;, based on Equation Equation 13.3;
for p € {C1,C2,C3,GRU} do
0, +— O;
end for
Calculate the gradient VL, ;
Update O¢1, Oco, Ocs, Ogry using Adam optimizer;

(G arg min L%
ve{®c1,002,003,0cRU}
end for
end for

In accordance with Section 13.1.1, ® encompasses all the trainable parame-
ters of the Student model. Specifically, Mgiv is the particular Student model
where only the parameters related to layer p and the last fully connected layer
are trainable, while the remaining are held fixed. According to the architecture
of the CRNN employed in this study p € {C1,C2,C3, GRU} where C1, C2,
and C3 correspond to the first, second, and third convolutional layer, respec-
tively, and GRU represents the bidirectional layer.

As shown in Algorithm 4, for each minibatch, the gradient of L®,; is com-
puted, and then applied it individually to each trainable layer of Student models
MI(;()iV’ with p € {C1,C2,C3,GRU}. Subsequently, the Student model and
the related parameters that yield the minimum L?IL after gradient update
are determined. The selected layer and the related weights are then used to
initialize the current best model MI(? Ly as starting point for the subsequent
training step. This procedure is iterated over a certain number of epochs until

the stopping criterion is satisfied.

Since the lowest value of L9;; is determined on each batch, the batch size
influences the selection process and the small the size, the specific will be the
selection for the windows contained in the batch. In the case where the batch
size is set to 1, the layer selection is determined by the value of Lg,, for each
input window. In the experimental section, the influences that different batch
sizes have on the performance are studied.
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13.3. Experiments

13.3.1. Dataset

The experiments have been carried out by using the UK-DALE [24] and RE-
FIT datasets [25]. For the datasets details refer to Appendix Section 1. The
appliances considered in the experiments depend on the devices included in the
test target houses which are Kettle (KE), Washing Machine (WM), Dishwasher
(DW), and Toaster (TOA) for House 2 and Kettle and Microwave (MW) for
House 4.

During the adaptation phase, only one month of annotated data is used
from each target house for each appliance. The composition of the adaptation
dataset is presented in Table 13.1.

13.3.2. Evaluation metrics

Two metrics have been used to evaluate the proposed approach. The first is
the Fj-score (F1) and the related micro-average already defined in Equation 5.9
and Equation 5.10.

13.3.3. Hyperparameters

Several hyperparameters that play a crucial role in both the learning and layer
selection have been investigated.

Initially, o was set to 0.4 in Equation 13.3. Then, during the second distilla-
tion phase, « is set to 0.5. Different batch sizes are explored, since the smaller
the size the more specific the layer selection for each instance. An example
of the performance trend with batch sizes varying from 1 to 16 is reported
in Figure 13.2 for the model My, ;. Performance significantly degrades for all
the appliances when the batch size is set to 16. However, for smaller values,
the Fl-scores remain relatively similar. The best performance on average is
obtained when the batch size is equal to 1.

The input window is of 2550 samples and the maximum number of epochs
to 1000 and used early stopping with a patience of 5 to avoid over-fitting.

Table 13.1.: Re-training data characteristics in terms of active samples.

Appliances House 2 House 4

Dishwasher 189375 Not present
Toaster 4646 Not present

Microwave  Not present 9866
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Figure 13.2.: Performance trend with varying batch sizes for the proposed AIL
approach. AVG denotes the average performance.

13.3.4. Experimental procedure

The proposed method is evaluated in a real-world scenario where public ag-
gregate and appliance-level data are available. This scenario is represented by
UK-DALE and it is used to create the so-called Deployed model My, because
it is initially deployed in the target houses. My is designed to classify K=2
appliances, specifically KE and WM, which are present in both REFIT target
houses. Then, Ms is adapted to each target house adding the new appliances
of interest for that particular house. This adaptation is achieved by using one
month of data belonging to target houses of REFIT. In a real-world scenario,
this data would have been collected locally, i.e., from the users’ houses. Thus,
it is worth limiting the quantity of data to be collected and annotated. The
choice of these target houses has been done to explore: (i) when the appliances
monitored by the deployed model are both present in the target house (House
2) (ii) when only one appliance of the deployed model is present (House 4).
Moreover, it is possible to evaluate the effect of the adaptation for three dif-
ferent appliances. Firstly the performance of the approach are evaluated when
introducing one appliance in the monitoring (from My to May; for Houses 2
and 4). Then, the evaluation of the performance is computed when adding a
second appliance considering two cases: (i) the Ma 1 became the Teacher for
the Student My 141, representing the case where the appliances are added pro-
gressively (ii) two appliances are added thus the Teacher is Ms. To thoroughly
evaluate the method, also the models M3 and M, where all appliances to be
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monitored are known before the deployment were trained. This allows us to
compare the performance of the method against scenarios where all appliances
are pre-determined. Mjz and My models are trained with UK-DALE for KE
and WM and data from the target environment are used only for the new appli-
ances. The proposed method is referred to as Proposed-AlIL, while the Learning
without Forgetting approach is referred to as LwF. The models M3 and M,
are denoted as Static. Additionally, the results related to the initial model De-
ployed are reported, assumed to be deployed in the target environment. The
Proposed-AIL code is available on GitHub!.

13.4. Results

The obtained results are shown in Table 13.2 and Table 13.3. Firstly, the My
(Deployed) model performance is reported to assess the performance of Stu-
dent models after adaptation. Considering the results for House 2 in Table 13.2,
when the DW is introduced, the Precision and Recall of the M3 Static approach
for the KE and WM decrease compared to My Deployed. This trend is also ob-
served for the My, 1 LwF approach and for Ms; Proposed-AIL only for WM.
This evidences that for the WM, other factors could influence the classification,
like the introduction of an appliance with similar characteristics as highlighted
by the scores obtained for all the evaluated methods. For KE, instead, with
proposedapproach there is a slight improvement compared to the initial My De-
ployed model. In summary, when introducing the DW, compared to LwF, the
Proposed-AIL better mitigates the forgetting both for KE and WM. Regard-
ing the DW, the new appliance, both LwF and Proposed-AIL achieve similar
performance with respect to the M3 Static approach, that presents the highest
Fy-score. On average, the proposed approach obtained higher Fj-score than
Ms Static and My, LwF methods.

When the model is adapted to classify an additional appliance, the TOA,
the My Static model exhibits an improved Precision for KE, decreased Recall
for WM, and stable performance for DW compared to the M3 Static model.
The Msy141 LwF shows an improvement for KE compared to Msy; LwF.
Nonetheless, comparing the models that introduced the TOA, KE, WM, and
TOA are better classified by Ms;141 Proposed-AIL while the DW is better
classified by Ms4141 LwF. On average, proposed method outperforms both
M, Static and Moy 141 LwF.

In the case where both DW and TOA are introduced together, proposed
method consistently outperforms both the My Static and My o LwF approaches,
showing the best overall results. For all the appliances, proposed method
presents an improvement in terms of Precision, Recall, and F1-score compared

Ihttps://github.com/GiuTan/Appliancelncrementallearning-NILM
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Table 13.2.: Results related to House 2. Best Fj-score when considering the
same appliances are highlighted in bold.

Appliance
Model Approach Metric KE WM DW TOA AVG
PR 0.86 0.65 - - 0.76
M, Deployed RE 0.87 0.89 - - 0.88
F1 0.87 0.75 - - 0.81
PR 0.65 0.50 0.85 - 0.67
M3 Static RE 0.89 0.81 0.90 - 0.87
F1 0.75 0.62 0.87 - 0.75
PR 0.78 0.55 0.94 - 0.77
LwF[78] RE 0.78 0.74 0.80 - 0.77
M F1 0.78 0.63 0.86 - 0.76
2 PR 0.89 054 081 - 0.75
Proposed-AIL RE 0.87 0.86 0.90 - 0.88
F1 0.88 0.66 0.86 - 0.80
PR 0.80 0.52 0.84 0.54 0.68
M, Static RE 0.82 0.72 0.91 0.63 0.77
F1 0.81 0.61 0.87 0.58 0.72
PR 0.85 047 0.88 0.85 0.76
LwF[78] RE 0.82 0.81 092 0.67 0.81
M F1 0.83 0.60 0.90 0.75 0.77
FHLL PR 0.88 053 0.84 084 0.77
Proposed-AIL RE 0.84 0.83 090 0.72 0.82
F1 0.86 0.64 0.87 0.78 0.79
PR 0.81 053 089 0.78 0.75
LwF[78] RE 0.84 0.86 0.93 0.69 0.83
F1 0.83 0.66 0.91 0.73 0.78

Mo

PR 0.89 056 0.89 0.82 0.79
Proposed-AIL RE 0.87 087 092 0.72 0.85
F1 0.88 0.68 0.91 0.77 0.81

to the My Static. Compared to Ms;o LwF, proposed method presents higher
scores, except for DW which has the same Precision and a slightly lower value
for the Recall. Due to rounding, the Fj-scores of the two methods are the same.

The results presented in Table 13.3 show that, on average, the proposed
method outperforms both the LwF and M3 Static approaches in terms of Fi-
score, even when evaluated on House 4 data. When MW is introduced, the
M1 Proposed-AIL model produces fewer false positives for KE than all the
other models, as shown by the Precision value. Nonetheless, compared to M,
Deployed and M3 Static, proposed approach exhibits a decreased Recall for
KE, suggesting an underestimation of the activations. For MW instead, the
proposed method achieves the highest Recall.
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Table 13.3.: Results related to House 4. Best Fj-score when considering the
same appliances are highlighted in bold.

Appliance
Model Approach Metric KE MW AVG
PR 0.57 - 0.57
M, Deployed RE 0.89 - 0.89
F1 0.70 - 0.70
PR 0.52  0.50 0.51
Ms Static RE 0.96  0.90 0.93

F1 0.68 0.64 0.66

PR 0.61  0.93 0.77

LwF[78] RE 0.51 0.92 0.72
F1 0.56 0.93 0.75

PR 0.63  0.90 0.77

Proposed-AIL RE 0.62 0.93 0.78
F1 0.62 092 0.77

M2+1

Based on the presented results, it is evident that adapting the pre-trained
network as in LwF and Proposed-AIL is effective in mitigating catastrophic for-
getting and achieving better overall performance, compared to including target
data in the pre-training set and re-training the model (as in M3 Static and My
Static). The performance variations observed after introducing a new appliance
can also be influenced by the nature of the appliance itself, as demonstrated in
the cases of WM and DW, or KE and TOA. Due to the complex interactions
among appliances, further investigations are required to fully understand these
dynamics.

Nonetheless, applying the proposed method is advantageous when introduc-
ing one or two appliances simultaneously. The dynamic layer selection tech-
nique is particularly effective in finding a suitable balance between the knowl-
edge of previous and new appliances, surpassing the limitations of training all
layers as in the LwF approach.
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Chapter 14.

Discussion

This part of the thesis offered a detailed description of three approaches that
look at the direction of low-complexity deep learning algorithms for NILM.

The approach based on weakly supervised knowledge distillation has been
proposed to enhance the scalability of the NILM approach on edge devices
with low resources. Starting from a large pre-trained model, the network is
adapted to the target scenario data while reducing the complexity. Gradually
evaluating network layers removal allowed to a better understanding of perfor-
mance degradation or improvement when occurred. Evaluated in two different
practical scenarios, the method reduced the number of network parameters up
to 10 times compared to the initial model while maintaining performance. An
extension of method has been presented in order to eliminate inconsistencies
between the Teacher and the Student networks behaviour during the training.
The inconsistencies have been detected by using an explainability tool that
shown where the network attention is focusing when producing the inference.
The explainability maps are included as an additional loss term, comparing the
student and teacher network maps. The approaches proposed in Chapter 11
and Chapter 12 are not directly comparable because the latter approached the
classification of each appliance singularly.

In the last work of this part, the appliance-incremental learning approach has
been designed to minimize the number of parameters when including additional
appliance monitoring into the algorithm. In this way, the NILM service pro-
vide to the user can be updated without significant additional computational
resources and necessity to improve the quality of the hardware and change the
device.

Future works aim to perform adaptation to new tasks by applying weak su-
pervision and reducing the architecture of the network until reaching the best
trade-off between complexity and performance. Moreover, a lightened train-
ing strategy should be adopted to allow possible adaptation on local devices
preserving more user privacy.
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Chapter 15.

Conclusions and future works

NILM is an effective tool to monitor appliance-level consumption and thus to
promote energy awareness, especially in residential settings. From consumption
awareness, applications and services can be extended to support users and
utilities in EMS and DR programs. A huge quantity of research effort has been
placed until now on this topic and deep learning approaches have been largely
applied, representing the state-of-the-art. This thesis addressed three major
gaps in the current NILM literature.

Firstly, supervised learning methods are often hindered by the need for la-
beled datasets, which are challenging to acquire in real-world scenarios. To
obtain this, in the first part, this thesis proposed several strategies to simplify
the role of the end-user. These strategies not only preserve the role of the
user, but also improve performance compared to state-of-the-art methods. By
exploiting coarser annotations provided by the users and developing learning
strategies based on weak supervision and transfer learning, this work demon-
strated that by reducing the quantity of annotated data, performance remained
stable or improved. When advanced data selection strategy, as active learning,
are considered to select data to be annotated by the user, the effort is even
lighter while performance increases.

Due to privacy concerns associated with sensitive data, it is preferable to
perform computations locally rather than on the cloud. Furthermore, issues
related to latency and bandwidth can impact the quality of the provided ser-
vice, especially when real-time feedback is required. Therefore, the second part
of the thesis described NILM approaches designed to favor local computation,
mitigating these concerns. Even with reduced complexity, these approaches en-
hance performance, while reducing the computational requirements more than
benchmark approaches. Not only, while enriching the network functionality
with additional tasks, network structure is maintained and only few additional
parameters are introduced to embed the new appliances monitoring.
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Chapter 15. Conclusions and future works

15.1. Future perspectives

Non-intrusive techniques are very promising, nonetheless the performance should
be additionally improved to ensure the reliability and trustworthiness of the
service, while preserving the role of the user and scalability, as in this the-
sis. A possibility to enhance performance can be the development of hybrid
monitoring systems, where the majority of the appliances are monitored non-
intrusively, while only few challenging appliances are monitored for a limited
time with electrical sensors. This strategy could also facilitate disaggregation
by exploiting the power consumption signals recorded by installed sensors to
lighten the aggregate power signal [148]. In this way, the identification or dis-
aggregation of appliances without plugs can be more accurate. Anyway, it is
worth considering that the plugs still present the limitation of missing data or
errors due to disconnection problems. Moreover, the installation depends on
the possibility to physically plug the smart sensors on the appliance plug, if
accessible. To enhance the efficiency of recently proposed methods, it might be
beneficial to assess the performance of hybrid monitoring frameworks.

Looking ahead, future directions could also focus on conducting training
locally allowing the network to adapt to new domains and tasks, further en-
hancing its applicability and effectiveness. Regarding other applications of
strong and weak labels for smart energy systems, power quality disturbances
identification and faults detection are tasks eligible to be modeled with weak
supervision.

Motivated by the growing literature, research effort can also be placed to
monitor loads in the industrial and commercial sectors that account for a large
part of the total energy consumption. Particularly for the industrial scenario,
energy monitoring can be effective at different levels to monitor the production,
detecting energy waste and anomalies.

Finally, the outcome of the monitoring system could be exploited to develop
accurate energy management systems to optimize the usage of renewable en-
ergy. Moreover, it can be integrated in advanced forecasting algorithm.
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1. Data Preparation

1. Data Preparation

The procedure to prepare the datasets is described here. Each dataset has
been processed to create one sets of bags to be used for training and testing
the proposed methods. The NILMTK [98] is a toolkit recently proposed to
process NILM datasets and prepare them to train and test some benchmark
approaches implemented in the framework. The toolkit is useful to resample
and align power signals since generally the aggregate signal and the appliance
consumption are acquired at different frequencies. Moreover, it is necessary to
fill gaps and missing values. The procedure for creating these sets is described
in the following:

1. The first step consisted in extracting the activations of the monitored ap-
pliances from the datasets. This has been performed by using NILMTK
using the parameters in [28] for UK-DALE, and the ones in [25] for RE-
FIT.

2. The second step consisted in combining the extracted activations ran-
domly to create bags with one to four concurrent appliances. In each
dataset, the maximum length of an activation is about 1500 samples, so
the bag length L is set to 2550. In this way, activations can be properly
placed within the segment. The location of the activation inside the bag
is determined randomly. Generally, the bag length can have a role in
performance; however, in the following experiments, it is important that
the same value is used in all the methods considered to evaluate only the
influence of weak labels.

3. The third step consisted in the extraction of the noise contribution, i.e.,
the term v(t) in Equation 2.3. This has been obtained by selecting a
random aggregate power segment of length L and then subtracting the
monitored appliances’ activations from it. The extracted noise term has
been then summed to bags created in step two. This procedure is repeated
for each bag, so noise terms are all different. Moreover, noise terms
and activations of the monitored appliances always belong to the same
building.

For each appliance, strong labels in a bag are set to 1 if a sample belongs to
an activation (i.e., the appliance is in the ON state), and 0 otherwise. Weak
labels are set to 1 if the activation of an appliance is present in the bag.

The following periods of UK-DALE were considered:

« house 1: 06/01,/2016-31,/08,/2016;

« house 2: 01/06/2013-31,/08,/2013;
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o house 3, 4: 16/03/2013-05/04/2013;
« house 5: 29/06/2014-05/09/2014.
As in [96], for REFIT the following date intervals are considered:
« houses 9, 12, 18: 07/12/2013-08/07/2015;
e houses 10, 17: 20/11/2013-30/06/2015;
 houses 2, 5, 7, 16: 17/09/2013-08/07/2015;
o house 13: 26/09/2013-08/07/2015;

« houses 3, 4, 6, 8, 11, 15, 19: 26/09/2013-08,/07/2015.

2. Benchmark Approaches

This part of the appendix is dedicated to describe more in details the bench-
mark approaches used to evaluate the innovative contribution and performance
improvements of the proposed methods.

2.1. Long-Short Term Memory Network

Traditional RNNs suffer of the vanishing gradient problem. Thus, the Long-
Short Term Memory Network has been proposed to avoid this issue and is
suitable for sequence predictions, capturing long-term dependencies. Kelly et
al. [28] proposed this architecture to disaggregate appliances consumption
patterns. The architecture is composed of one convolutional layer with 16
filters, a kernel size of 4, stride equal to 1 and a linear activation function.
Then, the features extracted by the convolutional layer are the input of two
bidirectional LSTM layers with 128 and 256 recurrent units respectively. In
the end, two fully connected layer are used with 128 neurons and activation
function tanh and 1 neuron with linear activation function.

2.2. Temporal Convolutional Network

The Temporal Convolutional Network (TCN) is a sequence modeling archi-
tecture derived from the CNNs [149]. Different from the popular canonical
recurrent networks such as LSTM, TCNs do not use gating mechanisms and
have much longer effective memory. The convolutional layer employees a causal
convolution, meaning there is no information leakage from the future to the
past, and a sequence-to-sequence approach, meaning that the input and output
sequences have the same lengths as in recurrent networks. Causal convolution
implies that the output at a certain step t is only convolved with elements from
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2. Benchmark Approaches

that step and earlier. Dilated convolution efficiently addresses the multi-scale
information integration problem. The residual connections are used to stack
the dilated causal convolution layers together to form a residual block.

Regarding NILM, the approach proposed in [5] employed a TCN architecture
trained by semi-supervised learning. The TCN residual block is composed by
two dilated causal convolution layers with ReLU activation, weight normaliza-
tion for the convolutional filters and dropout. The learning approach adopted
is semi-supervised and applied with the Teacher-Student architecture: in this
context, one network learns from labeled data while the weights of the other
network are updated by using the moving average and a loss contribution is
estimated comparing the output of the two networks on unlabelled data. The
structure of the network is composed of:

o Number of blocks: 5

o Number of filters for each block: 64
« Filter size: 3

o Dilation factor: 2¢ for block i

o Activation function: ReLu

e Dropout probability: 0.1

e Mini batch size: 1024

e Number of epochs: 150.

The learning rate is equal to 0.002 for the Adam optimizer [94].

2.3. Sequence-to-point

The sequence-to-point approach has been largely considered in literature. It
has been proposed as an alternative of the approach proposed by Kelly et al.
[28] that modeled NILM as a sequence-to-sequence problem.

The main idea behind the sequence-to-point is the prediction of the middle
point of the corresponding window for the target appliance, exploiting past
and future samples. By using a sliding window approach, each sample of the
target window is predicted. The approach is designed by using a CNN and it
is trained to predict the power consumption of the appliance.

The proposed CNN is composed of:

e 5 convolutional layers

e 30, 30, 40, 50, and 50 filters for each layer respectively
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e 10, 8, 6, 5, and 5 filter size for each layer respectively
e stride equal to 1

o ReLu and Linear (last layer) activations.
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