Zinc oxide and polylactic-co-glycolic acid (ZnO-PLGA) nanocomposites are known to exhibit different biomedical applications and antibacterial activity, which could be beneficial for adding to wound dressings after different surgeries. However, possible cytotoxic effects along with various unexpected activities could reduce the use of these prominent systems. This is correlated to the property of ZnO, which exhibits different polymeric forms, in particular, wurtzite, zinc-blende, and rocksalt. In this study, we propose a computational approach based on the density functional theory to investigate the properties of ZnO-PLGA systems in detail. First, three different stable polymorphs of ZnO were considered. Subsequently, the abilities of each system to absorb the PLGA copolymer were thoroughly investigated, taking into account the modulation of electrical, optical, and mechanical properties. Significant differences between ZnO and PLGA systems have been found; in this study, we remark on the potential use of these models and the necessity to describe crucial surface aspects that might be challenging to observe with experimental approaches but which can modulate the performance of nanocomposites.

Adsorption of Polylactic-co-Glycolic Acid on Zinc Oxide Systems: A Computational Approach to Describe Surface Phenomena / Mohebbi, Elaheh; Pavoni, Eleonora; Minnelli, Cristina; Galeazzi, Roberta; Mobbili, Giovanna; Sabbatini, Simona; Stipa, Pierluigi; Masoud Seyyed Fakhrabadi, Mir; Laudadio, Emiliano. - In: NANOMATERIALS. - ISSN 2079-4991. - ELETTRONICO. - 14:8(2024). [10.3390/nano14080687]

Adsorption of Polylactic-co-Glycolic Acid on Zinc Oxide Systems: A Computational Approach to Describe Surface Phenomena

Elaheh Mohebbi;Eleonora Pavoni;Cristina Minnelli;Roberta Galeazzi;Giovanna Mobbili;Simona Sabbatini;Pierluigi Stipa;Emiliano Laudadio
2024-01-01

Abstract

Zinc oxide and polylactic-co-glycolic acid (ZnO-PLGA) nanocomposites are known to exhibit different biomedical applications and antibacterial activity, which could be beneficial for adding to wound dressings after different surgeries. However, possible cytotoxic effects along with various unexpected activities could reduce the use of these prominent systems. This is correlated to the property of ZnO, which exhibits different polymeric forms, in particular, wurtzite, zinc-blende, and rocksalt. In this study, we propose a computational approach based on the density functional theory to investigate the properties of ZnO-PLGA systems in detail. First, three different stable polymorphs of ZnO were considered. Subsequently, the abilities of each system to absorb the PLGA copolymer were thoroughly investigated, taking into account the modulation of electrical, optical, and mechanical properties. Significant differences between ZnO and PLGA systems have been found; in this study, we remark on the potential use of these models and the necessity to describe crucial surface aspects that might be challenging to observe with experimental approaches but which can modulate the performance of nanocomposites.
2024
File in questo prodotto:
File Dimensione Formato  
Mohebbi_Adsorption-Polylactic-co-Glycolic-Acid-Zinc-Oxide_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 2.75 MB
Formato Adobe PDF
2.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/329232
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact