We prove that sequences of functions (un)⊂Ws,p(RN), with s∈(0,1) and [Formula Presented], bounded in Ws,p(RN), strongly convergent in [Formula Presented] and solving nonlinear fractional p-Laplacian Schrödinger equations in RN, must vanish at infinity uniformly with respect to n∈N.
On the uniform vanishing property at infinity of Ws,p-sequences / Ambrosio, V.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 238:(2024). [10.1016/j.na.2023.113398]
On the uniform vanishing property at infinity of Ws,p-sequences
Ambrosio V.
2024-01-01
Abstract
We prove that sequences of functions (un)⊂Ws,p(RN), with s∈(0,1) and [Formula Presented], bounded in Ws,p(RN), strongly convergent in [Formula Presented] and solving nonlinear fractional p-Laplacian Schrödinger equations in RN, must vanish at infinity uniformly with respect to n∈N.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Ambrosio_On-the-uniform_2024.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
507.88 kB
Formato
Adobe PDF
|
507.88 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.