We prove that sequences of functions (un)⊂Ws,p(RN), with s∈(0,1) and [Formula Presented], bounded in Ws,p(RN), strongly convergent in [Formula Presented] and solving nonlinear fractional p-Laplacian Schrödinger equations in RN, must vanish at infinity uniformly with respect to n∈N.

On the uniform vanishing property at infinity of Ws,p-sequences / Ambrosio, V.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 238:(2024). [10.1016/j.na.2023.113398]

On the uniform vanishing property at infinity of Ws,p-sequences

Ambrosio V.
2024-01-01

Abstract

We prove that sequences of functions (un)⊂Ws,p(RN), with s∈(0,1) and [Formula Presented], bounded in Ws,p(RN), strongly convergent in [Formula Presented] and solving nonlinear fractional p-Laplacian Schrödinger equations in RN, must vanish at infinity uniformly with respect to n∈N.
2024
File in questo prodotto:
File Dimensione Formato  
Ambrosio_On-the-uniform_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 507.88 kB
Formato Adobe PDF
507.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/325939
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact