
ON THE UNIFORM VANISHING PROPERTY AT INFINITY OF
W s,p-SEQUENCES

VINCENZO AMBROSIO

Abstract. We prove that sequences of functions (un) ⊂ W s,p(RN ), with s ∈ (0, 1) and p ∈
(1, N

s
), bounded in W s,p(RN ), strongly convergent in L

Np
N−sp (RN ) and solving nonlinear fractional

p-Laplacian Schrödinger equations in RN , must vanish at infinity uniformly with respect to n ∈ N.

1. Introduction

In this paper, we show the uniform vanishing property at infinity of W s,p(RN )-sequences, with
s ∈ (0, 1) and p ∈ (1, Ns ), bounded in W s,p(RN ), strongly convergent in Lp∗s (RN ), where p∗s := Np

N−sp ,
and that are solutions of nonlinear Schrödinger equations in RN driven by the fractional p-Laplacian
operator (−∆)sp defined (up to a normalization constant), for u : RN → R smooth enough, by

(−∆)spu(x) := 2 lim
r→0

∫
RN\Br(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy, x ∈ RN .

More precisely, our main result can be stated as follows.

Theorem 1.1. Let s ∈ (0, 1) and p ∈ (1, Ns ). Let f : RN ×R→ R be a Carathéodory function such
that for all ε > 0 there exists Cε > 0 such that

|f(x, t)| 6 ε |t|p−1 + Cε|t|q−1 for a.e x ∈ RN and for all t ∈ R, (1.1)

with q ∈ (p, p∗s], and let V : RN → R be a continuous potential such that, for some V0 ∈ (0,∞),

V (x) > V0 for all x ∈ RN . (1.2)

Let (un) be a nonnegative sequence in W s,p
V (RN ) (see Section 2 for the precise definition of this

space) such that ‖un‖W s,p
V (RN ) 6 C for all n ∈ N, un → u in Lp∗s (RN ) and each un solves (in weak

sense)

(−∆)spu+ V (x)|u|p−2u = f(x, u) in RN . (1.3)

Then, (un) satisfies the uniform vanishing property at infinity, i.e.

lim
|x|→∞

sup
n∈N
|un(x)| = 0.

We recall that nonlocal equations like (1.3) have been extensively investigated in recent years, both
for their interesting theoretical structure and in view of concrete real world applications; see [3,4,9,20]
and the references therein. Now we give a sketch of the proof of Theorem 1.1. First we use suitable
Moser iterations [15] to deduce that ‖un‖L∞(RN ) 6 C for all n ∈ N. The condition un → u in
Lp
∗
s (RN ) plays a crucial role when q = p∗s in (1.1), while for q ∈ (p, p∗s) it suffices to use the

boundedness of (un) in Lp
∗
s (RN ). The uniform L∞-bound combined with the strong convergence

in Lp∗s (RN ) and an interpolation argument, implies that un → u in Lr(RN ) for all r ∈ (p,∞). By
(1.1), we see that each un also satisfies (−∆)spun + σup−1n 6 C̃uq−1n in RN , with σ, C̃ > 0, and in
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2 V. AMBROSIO

light of Browder-Minty theorem we can construct a nonnegative sequence (zn) ⊂ W s,p(RN ) such
that each zn solves (−∆)spzn + σzp−1n = C̃uq−1n in RN . By comparison, we know that 0 6 un 6 zn
in RN . Furthermore, thanks to the strong convergence of (un) in Lr(RN ) for all r ∈ (p,∞), and
the boundedness of (zn) in W s,p(RN ), we show that (zn) strongly converges in W s,p(RN ). This fact
together with a Moser iteration yield ‖zn‖L∞(RN ) 6 C for all n ∈ N. Then we can invoke the interior
Hölder regularity result in [11] to infer that ‖zn‖C0,α(RN ) 6 C for all n ∈ N. Accordingly, we apply
Lemma 2.1 below to see that lim|x|→∞ supn∈N |zn(x)| = 0. Since 0 6 un 6 zn in RN , we conclude
that lim|x|→∞ supn∈N |un(x)| = 0. We stress that the hypothesis on the sign of (un) is not essential
and can be removed; see Remark 2.1.

When s → 1, (−∆)spu reduces to the p-Laplacian operator −∆pu := div(|∇u|p−2∇u), and
the proof of the uniform vanishing property at infinity of sequences (un) ⊂ W 1,p

V (RN ) satisfying
‖un‖W 1,p

V (RN )
6 C for all n ∈ N, un → u in Lp∗(RN ) and −∆pun+V (x)|un|p−2un = f(x, un) in RN ,

where f verifies (1.1) with q ∈ (p, p∗], p∗ := Np
N−p and N > p > 1, is classically obtained by using

appropriate Moser iterations. More precisely, arguing as in [14, Theorem 1.11] (see also [1, Lemma
4.5]), one takes as test function in the weak formulation of equation solved by un, the function

ϕpun(min{|un|, L})p(γ−1),

where L > 0, γ > 1, and ϕ ∈ C∞(RN ) is such that 0 6 ϕ 6 1 in RN , ϕ(x) = 1 for |x| > R, ϕ(x) = 0
for |x| 6 R − r and |∇ϕ| 6 2

r , with R > 0 and 0 < r 6 R
2 . A standard Moser iterative method and

un → u in Lp∗(RN ) lead to

‖un‖L∞(BcR(0))
6 C‖un‖Lp∗ (BcR

2

(0)) for all n ∈ N,

from which we derive that lim|x|→∞ |un(x)| = 0 uniformly in n ∈ N. Alternatively, reasoning as
in [7, Theorem 2.3], one can choose as test function

un(min{|un|, L})p(γ−1),

and by means of a Moser iteration and un → u in Lp
∗
(RN ), we arrive at (un) ⊂ Lr(RN ) for all

r ∈ [p,∞) and that there exists a constant Cr > 0 such that ‖un‖Lr(RN ) 6 Cr for all n ∈ N. These
facts combined with the local L∞-estimate for quasilinear equations due to Serrin [16, Theorem 1]
ensure that, fixed x ∈ RN and t > N

p ,

‖un‖L∞(B1(x)) 6 C(‖un‖Lp(B2(x)) + ‖|un|p
∗−1‖

1
p−1

Lt(B2(x))
) for all n ∈ N,

which provides the desired assertion by letting |x| → ∞. However, these techniques do not seem
adaptable for equations involving the nonlocal operator (−∆)sp, and thus Theorem 1.1 gives a useful
tool to reach the uniform vanishing property at infinity of sequences (un) bounded in W s,p

V (RN ),
satisfying un → u in Lp∗s (RN ) and (1.3). Notice that, when s ∈ (0, 1) and p = 2, Theorem 1.1 can be
proved by exploiting the properties of the kernel of the resolvent ((−∆)s + λ)−1 on RN with λ > 0
(see [2, Lemma 2.6] and [3, Remark 7.2.10]), or making use of the extension method [8] and applying
the L∞-estimate for subsolutions of degenerate elliptic equations in half-balls (see [3, Lemma 6.3.23]).
Nevertheless, these methods are not available for s ∈ (0, 1) and p ∈ (1,∞) \ {2}, and new ideas are
needed to accomplish the desired result.

To our knowledge, our approach is completely new in literature. We emphasize that our arguments
can be adapted for the local case s = 1; see Remark 2.3. In addition, we observe that Theorem 1.1
and [9, Theorem 7.1] allow us to prove a decay estimate for un(x) as |x| → ∞ uniformly in n ∈ N;
see Corollary 2.1. The remaining cases N = sp and N < sp in Theorem 1.1 are discussed in Section
3. Finally, we demonstrate a Kato’s type inequality [12] for (−∆)sp in Appendix.
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2. Proofs of the main results

We start by establishing a very useful lemma that can be seen as a generalization for Lp-sequences
uniformly equicontinuous in RN of the following well-known fact: if u : RN → R is uniformly
continuous and u ∈ Lp(RN ) for some p ∈ [1,∞), then lim|x|→∞ |u(x)| = 0.

Lemma 2.1. Let N > 1 and p ∈ [1,∞). Let (un) ⊂ Lp(RN ) be a sequence such that:
(a) un → u in Lp(RN ),
(b) (un) is uniformly equicontinuous in RN , that is, for all η > 0 there exists δ = δη > 0 such that,

if x, y ∈ RN are such that |x− y| < δ, then |un(x)− un(y)| < η for all n ∈ N.
Then,

lim
|x|→∞

sup
n∈N
|un(x)| = 0.

Proof. Suppose the assertion of the lemma is false. Then there exist a sequence (xk) ⊂ RN , a
subsequence (nk) ⊂ N and η > 0 such that |xk| > k and |unk(xk)| > η for all k ∈ N. Using (b),
we can find δ = δη > 0 such that, if |x − y| < δ then |un(x) − un(y)| < η

2 for all n ∈ N. Hence,
|unk(x)| > η

2 whenever |x − xk| < δ. On the other hand, from (a) and [6, Theorem 4.9], we derive
that there exists h ∈ Lp(RN ) such that, up to a subsequence, |unk(x)| 6 h(x) for a.e. x ∈ RN and
for all k ∈ N. Consequently,

C >
∫
RN
|h|p dx >

∞∑
k=1

∫
|x−xk|<δ

|unk(x)|p dx >
∞∑
k=1

∫
|x−xk|<δ

(η
2

)p
dx

=
∞∑
k=1

(η
2

)p
|Bδ(0)| =∞,

that is a contradiction. �

Next, in order to prove Theorem 1.1, we collect some notations and definitions. Let s ∈ (0, 1) and
p ∈ (1, Ns ). By Ds,p(RN ) we denote the closure of C∞c (RN ) with respect to

[u]s,p :=

(∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

) 1
p

,

or equivalently (see [9, Theorem 2.2])

Ds,p(RN ) :=
{
u ∈ Lp∗s (RN ) : [u]s,p <∞

}
.

The fractional Sobolev space W s,p(RN ) given by

W s,p(RN ) :=
{
u ∈ Lp(RN ) : [u]s,p <∞

}
is equipped with the norm

‖u‖W s,p(RN ) :=
(

[u]ps,p + ‖u‖p
Lp(RN )

) 1
p
.

It is well-known that there exists a constant S∗ = S(N, s, p) > 0 such that

S∗‖u‖pLp∗s (RN )
6 [u]ps,p for all u ∈ Ds,p(RN ). (2.1)

Moreover, W s,p(RN ) is continuously embedded in Lq(RN ) for all q ∈ [p, p∗s] and compactly in
Lqloc(R

N ) for all q ∈ [1, p∗s), and C∞c (RN ) is dense in W s,p(RN ); see [3, 10] for more details.
Let V : RN → R be a continuous potential satisfying (1.2). We define the Banach spaceW s,p

V (RN )

as the completion of C∞c (RN ) with respect to the norm

‖u‖W s,p
V (RN ) :=

(
[u]ps,p + ‖V

1
pu‖p

Lp(RN )

) 1
p
.
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Note that (1.2) implies that W s,p
V (RN ) ⊂ W s,p(RN ). For s = 1, W 1,p

V (RN ) is defined in a similar
way by considering ‖∇u‖Lp(RN ) in place of [u]s,p.

We say that u ∈W s,p
V (RN ) is a weak solution to (1.3) if for all ψ ∈W s,p

V (RN ) it holds∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
(ψ(x)− ψ(y)) dxdy +

∫
RN

V (x)|u|p−2uψ dx =

∫
RN

f(x, u)ψ dx.

In what follows, when we say that a nonnegative function u ∈W s,p
V (RN ) solves (in weak sense)

(−∆)spu+ V (x)up−1 6 (>)f(x, u) in RN ,

we mean that u fulfills∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
(ψ(x)− ψ(y)) dxdy +

∫
RN

V (x)up−1ψ dx 6 (>)

∫
RN

f(x, u)ψ dx

for all ψ ∈W s,p
V (RN ) such that ψ > 0 in RN .

Proof of Theorem 1.1. We split the proof into two main steps.
Step 1 There exists a constant C > 0 such that

‖un‖L∞(RN ) 6 C for all n ∈ N, (2.2)

We perform a Moser iteration argument [15]. For each L > 0 and γ > 1, we define

φ(t) := tt
p(γ−1)
L for t > 0, where tL := min{t, L},

Notice that φ is Lipschitz and nondecreasing in [0,∞). Let us consider

Φ(t) :=

∫ t

0
(φ′(τ))

1
p dτ.

By [5, Lemma A.2], we know that

|a− b|p−2(a− b)(φ(a)− φ(b)) > |Φ(a)− Φ(b)|p for all a, b > 0. (2.3)

Set uL,n := min{un, L} and wL,n := unu
γ−1
L,n . Choosing φ(un) = unu

p(γ−1)
L,n ∈ W s,p

V (RN ) as test
function in the weak formulation of (1.3), and exploiting (2.3), we have

[Φ(un)]ps,p +

∫
RN

V (x)wpL,n dx

6
∫∫

R2N

|un(x)− un(y)|p−2(un(x)− un(y))((unu
p(γ−1)
L,n )(x)− (unu

p(γ−1)
L,n )(y))

|x− y|N+sp
dxdy

+

∫
RN

V (x)upnu
p(γ−1)
L,n dx =

∫
RN

f(x, un)unu
p(γ−1)
L,n dx.

(2.4)

Let us observe that

Φ(t) >
1

γ
ttγ−1L for all t > 0,

which combined with (2.1) yields

[Φ(un)]ps,p > S∗‖Φ(un)‖p
Lp
∗
s (RN )

>
1

γp
S∗‖wL,n‖pLp∗s (RN )

.

Thus, by (2.4),

1

γp
S∗‖wL,n‖pLp∗s (RN )

+

∫
RN

V (x)wpL,n dx 6
∫
RN

f(x, un)unu
p(γ−1)
L,n dx.



5

Using (1.1) (with ε = V0
2 ) and (1.2), we see that, for some constant CV0

2

> 0,

1

γp
S∗‖wL,n‖pLp∗s (RN )

+

∫
RN

V0w
p
L,n dx 6

∫
RN

V0
2
wpL,n dx+ CV0

2

∫
RN

uqnu
p(γ−1)
L,n dx

from which we derive

‖wL,n‖pLp∗s (RN )
6 C1γ

p

∫
RN

uqnu
p(γ−1)
L,n dx, (2.5)

where C1 := S−1∗ CV0
2

> 0. Now we distinguish the following cases.
Case 1 When q ∈ (p, p∗s).
Because

uqnu
p(γ−1)
L,n = uq−pn wpL,n,

the Hölder inequality and (2.5) lead to

‖wL,n‖pLp∗s (RN )
6 C1γ

p‖un‖q−pLp
∗
s (RN )

‖wL,n‖pLα∗s (RN )
,

where
α∗s :=

pp∗s
p∗s − (q − p)

∈ (p, p∗s).

Exploiting the fact that

‖un‖Lp∗s (RN ) 6 K for all n ∈ N, (2.6)

we have

‖wL,n‖pLp∗s (RN )
6 C2γ

p‖wL,n‖pLα∗s (RN )
,

where C2 := C1K
q−p > 0. Note that, if un ∈ Lγα

∗
s (RN ), then, due to uL,n 6 un, we find

‖wL,n‖pLp∗s (RN )
6 C2γ

p‖un‖pγLγα∗s (RN )
<∞,

and applying Fatou’s lemma, as L→∞, we get

‖un‖Lγp∗s (RN ) 6 C
1
pγ

2 γ
1
γ ‖un‖Lγα∗s (RN ), (2.7)

and so un ∈ Lγp
∗
s (RN ). Now we set γ := p∗s

α∗s
> 1, and observe that, since un ∈ Lp

∗
s (RN ) for all

n ∈ N, (2.7) holds for this choice of γ. Thus, owing to γ2α∗s = γp∗s, we see that (2.7) is true with γ
replaced by γ2. Hence,

‖un‖Lγ2p∗s (RN )
6 C

1
pγ2

2 γ
2
γ2 ‖un‖Lγ2α∗s (RN )

6 C
1
p

(
1
γ
+ 1
γ2

)
2 γ

1
γ
+ 2
γ2 ‖un‖Lγα∗s (RN )

= C
1
p

(
1
γ
+ 1
γ2

)
2 γ

1
γ
+ 2
γ2 ‖un‖Lp∗s (RN ),

where we have used the fact that γα∗s = p∗s. Iterating this process, we obtain

‖un‖Lγmp∗s (RN ) 6 C

∑m
j=1

1

pγj

2 γ
∑m
j=1

j

γj ‖un‖Lp∗s (RN ) for all n,m ∈ N.

In view of (2.6), we arrive at

‖un‖Lγmp∗s (RN ) 6 C

∑m
j=1

1

pγj

2 γ
∑m
j=1

j

γjK for all n,m ∈ N. (2.8)

Letting m→∞ in (2.8), we deduce that

‖un‖L∞(RN ) 6 C
σ1
2 γσ2K =: C3 for all n ∈ N,
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where

σ1 :=
∞∑
j=1

1

pγj
<∞ and σ2 :=

∞∑
j=1

j

γj
<∞.

Case 2 When q = p∗s.
Suppose (un) ⊂ Lpγ(RN ) and prove that (un) ⊂ Lp

∗
sγ(RN ). Since up

∗
s
n u

p(γ−1)
L,n = hnw

p
L,n, where

hn := u
p∗s−p
n ∈ L

N
sp (RN ), and recalling (2.5), we have

‖wL,n‖pLp∗s (RN )
6 C1γ

p

∫
RN

hnw
p
L,n dx. (2.9)

Let M > 0 to be fixed later and set

An,M := {x ∈ RN : hn(x) 6M} and Bn,M := {x ∈ RN : hn(x) > M}.
Then, ∫

RN
hnw

p
L,n dx =

∫
An,M

hnw
p
L,n dx+

∫
Bn,M

hnw
p
L,n dx

6M‖wL,n‖pLp(RN )
+

(∫
Bn,M

h
N
sp
n dx

) sp
N

‖wL,n‖pLp∗s (RN )
. (2.10)

Thanks to un → u in Lp∗s (RN ), we can take M ≡Mγ > 0 sufficiently large such that(∫
Bn,M

h
N
sp
n dx

) p
sN

6
1

2C1γp
for all n ∈ N. (2.11)

Combining (2.9), (2.10) and (2.11), and using wL,n 6 u
γ
n, we get

‖wL,n‖qLp∗s (RN )
6 2C1γ

pMβ‖un‖pγLpγ(RN )
,

and invoking Fatou’s lemma, as L→∞, we reach

‖un‖pγLp∗sγ(RN )
6 2C1Mγγ‖un‖pγLpγ(RN )

. (2.12)

Therefore a bootstrap argument can start: because (un) ⊂ Lp
∗
s (RN ), we can apply (2.12) with

γ = p∗s
p to obtain that (un) ⊂ L

(
p∗s
p

)
p∗s (RN ). We can then apply again (2.12) and, after k iterations,

we find (un) ⊂ L

(
p∗s
p

)k
p∗s (RN ) and thus (un) ⊂ Lr(RN ) for all r ∈ [p∗s,∞). We now go back to

inequality (2.5). By 0 6 uL,n 6 un and letting L→∞ in (2.5), we have(∫
RN

up
∗
sγ
n dx

) p
p∗s
6 C1γ

p

∫
RN

up
∗
s+p(γ−1)
n dx,

and so (∫
RN

up
∗
sγ
n dx

) 1
p∗s(γ−1)

6 ( p
√
C1γ)

1
γ−1

(∫
RN

up
∗
s+p(γ−1)
n dx

) 1
p(γ−1)

. (2.13)

Let γ1 := p∗s
p and define γm inductively so that p∗s + p(γm+1 − 1) = p∗sγm for m ∈ N. Hence,

γm = γm−11 (γ1 − 1) + 1 for m ∈ N, and lim
m→∞

γm =∞.

Put

Ψm,n :=

(∫
RN

up
∗
sγm
n dx

) 1
p∗s(γm−1)

for all m,n ∈ N.
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Consequently, (2.13) can be written as

Ψm+1,n 6 C
1

γm+1−1

m+1 Ψm,n for all m,n ∈ N,

where Cm+1 := q
√
C1γm+1. Iterating the above relation, we find

Ψm+1,n 6

m+1∏
j=2

C
1

γj−1

j

Ψ1,n for all m ∈ N \ {1}, n ∈ N. (2.14)

In view of (2.6), it follows from (2.12) with γ = γ1 = p∗s
p that, for some C ′ > 0,

Ψ1,n 6

(
2C1M p∗s

p

p∗s
p

) (p∗s)
2

p∗s−p
‖un‖

(p∗s)
2

p∗s−p

Lp
∗
s (RN )

6 C ′ for all n ∈ N.

On the other hand, standard calculations show that there exists C ′′ > 0 such that
m+1∏
j=2

C
1

γj−1

j = ( q
√
C1)

∑m+1
j=2

1

γ
j−1
1 (γ1−1)

m+1∏
j=2

(
γj−11 (γ1 − 1) + 1

) 1

γ
j−1
1 (γ1−1) 6 C ′′ for all m ∈ N \ {1}.

Then, passing to the limit as m→∞ in (2.14), we can infer that

‖un‖L∞(RN ) 6 C
′C ′′ for all n ∈ N.

Step 2 Conclusion.
From (2.2) and [11, Corollary 5.5], we know that un ∈ C0(RN ) for all n ∈ N (indeed, un ∈ C0,α

loc (RN )).
Using (2.2), (un) is bounded in Lp(RN ), un → u in Lp

∗
s (RN ) and the interpolation inequality for

Lr-spaces, we get

‖un‖Lr(RN ) 6 C for all n ∈ N and r ∈ [p,∞], (2.15)

and

un → u in Lr(RN ) for all r ∈ (p,∞). (2.16)

Now, we fix ε ∈ (0, V0). Exploiting (1.1) and (1.2), we have that un solves (in weak sense)

(−∆)spun + σup−1n 6 C̃uq−1n in RN ,

where σ := V0 − ε > 0 and C̃ := Cε > 0.
Let us introduce the operator A : W s,p(RN ) → (W s,p(RN ))∗, where (W s,p(RN ))∗ denotes the

dual of W s,p(RN ), given by

〈A(u), v〉 :=

∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+sp
dxdy

+ σ

∫
RN
|u|p−2uv dx for u, v ∈W s,p(RN ).

We claim that A satisfies all assumptions of Browder-Minty theorem (see [19, Theorem 26.A]), and
as a result A is surjective. Recall that W s,p(RN ) is a (real) reflexive Banach space1. Next we verify
that A is hemicontinuous, i.e. the real function t 7→ 〈A(u + tv), w〉 is continuous on [0, 1] for all
u, v, w ∈W s,p(RN ). Let (tn) ⊂ [0, 1] be such that tn → t. We have,

〈A(u+ tnv), w〉

1Let us consider the linear isometry T : W s,p(RN )→ E := Lp(RN )×Lp(R2N ) defined as T (u) :=

(
u, u(x)−u(y)

|x−y|
N+sp

p

)
.

Since W s,p(RN ) is a Banach space, T (W s,p(RN )) is a closed subspace of E. Using this fact and that Lr(Rk) is a
reflexive, separable and uniformly convex Banach space for all r ∈ (1,∞) and k ∈ N (see [6, Chapter 4]), we deduce
that W s,p(RN ) is a reflexive, separable and uniformly convex space for all s ∈ (0, 1) and p ∈ (1,∞).
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=

∫∫
R2N

|u(x)− u(y) + tn(v(x)− v(y))|p−2(u(x)− u(y) + tn(v(x)− v(y)))(w(x)− w(y))

|x− y|N+sp
dxdy

+

∫
RN
|u+ tnv|p−2(u+ tnv)w dx,

and ∣∣∣∣ |u(x)− u(y) + tn(v(x)− v(y))|p−2(u(x)− u(y) + tn(v(x)− v(y)))(w(x)− w(y))

|x− y|N+sp

∣∣∣∣
6

(|u(x)− u(y)|+ |v(x)− v(y)|)p−1|w(x)− w(y)|
|x− y|N+sp

∈ L1(R2N ),

||u+ tnv|p−2(u+ tnv)w| 6 (|u|+ |v|)p−1|w| ∈ L1(RN ).

Then, applying the dominated convergence theorem, we deduce the assertion. Bearing in mind the
following Simon’s inequalities [17, formula (2.2)],

(|x|p−2x− |y|p−2y) · (x− y) >

{
cp|x− y|p if p ∈ [2,∞),

cp
|x−y|2

(|x|+|y|)2−p if p ∈ (1, 2),
for all x, y ∈ RN ,

we see that A is monotone, i.e. 〈A(u) − A(v), u − v〉 > 0 for all u, v ∈ W s,p(RN ). Finally, A
is coercive (due to 〈A(u), u〉/‖u‖W s,p(RN ) > min{1, σ}‖u‖p−1

W s,p(RN )
→ ∞ as ‖u‖W s,p(RN ) → ∞).

Therefore, Browder-Minty theorem implies that A is surjective2, that is, for all v ∈ (W s,p(RN ))∗

there exists u ∈ W s,p(RN ) such that A(u) = v. Thus, since C̃uq−1n ∈ L
p
p−1 (RN ) ⊂ (W s,p(RN ))∗,

there exists zn ∈W s,p(RN ) solving (in weak sense)

(−∆)spzn + σ|zn|p−2zn = C̃uq−1n in RN . (2.17)

Taking z−n := min{zn, 0} in the weak formulation of (2.17), and using un > 0 and the elementary
inequality

|x− y|p−2(x− y)(x− − y−) > |x− − y−|p for all x, y ∈ R,

it is easy to check that zn > 0 in RN . By comparison (see [9, Theorem 7.1]), we obtain that
0 6 un 6 zn in RN and for all n ∈ N. Now, testing (2.17) with zn, we derive that

[zn]ps,p + σ‖zn‖pLp(RN )
= C̃

∫
RN

uq−1n zn dx, (2.18)

and exploiting the Young’s inequality with η ∈ (0, σ), i.e. ab 6 ηap +Cηb
p
p−1 for all a, b > 0, on the

right hand side of (2.18), we have

[zn]ps,p + σ‖zn‖pLp(RN )
6 ηC̃‖zn‖pLp(RN )

+ CηC̃

∫
RN
|un|

(q−1)p
p−1 dx.

In view of (q−1)p
p−1 ∈ (p,∞) and (2.15), we know that∫

RN
|un|

(q−1)p
p−1 dx 6 C for all n ∈ N,

and so ‖zn‖W s,p(RN ) 6 C for all n ∈ N. Hence, up to a subsequence, we may assume that

zn ⇀ z in W s,p(RN ). (2.19)

From (2.19) and un → u in L
(q−1)p
p−1 (RN ) (thanks to (2.16)), it follows that z solves (in weak sense)

(−∆)spz + σ|z|p−2z = C̃uq−1 in RN .

2Indeed, A is invertible because A is strictly monotone.
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In particular,

[z]ps,p + σ‖z‖p
Lp(RN )

= C̃

∫
RN

uq−1z dx, (2.20)

Next we show that ∫
RN

uq−1n zn dx→
∫
RN

uq−1z dx. (2.21)

Let us observe that∫
RN

uq−1n zn dx−
∫
RN

uq−1z dx

=

∫
RN

(uq−1n − uq−1)zn dx+

∫
RN

(zn − z)uq−1 dx =: Xn + Yn.

In light of (2.19), it is clear that Yn → 0. On the other hand, employing the Hölder inequality,
(2.19), (2.16) with r = (q−1)p

p−1 , and the dominated convergence theorem, we have

|Xn| 6
(∫

RN
|uq−1n − uq−1|

p
p−1

) p−1
p

‖zn‖Lp(RN )

6 C

(∫
RN
|uq−1n − uq−1|

p
p−1

) p−1
p

→ 0.

Therefore, (2.21) is satisfied. Combining (2.18), (2.20) and (2.21), we deduce that

[zn]ps,p + σ‖zn‖pLp(RN )
= [z]ps,p + σ‖z‖p

Lp(RN )
+ on(1),

and recalling that W s,p(RN ) is a uniformly convex space, we infer that zn → z in W s,p(RN ). In
particular, zn → z in Lt(RN ) for all t ∈ [p, p∗s] and condition (a) of Lemma 2.1 is true.

Testing (2.17) with znz
p(γ−1)
L,n and exploiting C̃uq−1n 6 C̃zq−1n , we can proceed as in Step 1 to

obtain the following estimate

‖znzγ−1L,n ‖
p

Lp
∗
s (RN )

6 C̃1γ
p

∫
RN

zqnz
p(γ−1)
L,n dx,

where C̃1 := S−1∗ C̃ > 0, instead of (2.5). On account of zn → z in Lp∗s (RN ), we can perform the
same iteration arguments given in Step 1 to arrive at

‖zn‖L∞(RN ) 6 C for all n ∈ N. (2.22)

Invoking [11, Corollary 5.5] and using (2.22), we see that, fixed x0 ∈ RN , (zn) ⊂ C0,α(B1/2(x0)) for
some α ∈ (0, 1) depending only on N, s, p and independent of n ∈ N and x0, and it holds

[zn]C0,α(B1/2(x0))
:= sup

x,y∈B1/2(x0), x 6=y

|zn(x)− zn(y)|
|x− y|α

6 CN,s,p for all n ∈ N, (2.23)

where CN,s,p > 0 is independent of x0 ∈ RN . Combining (2.22) with (2.23), we get

‖zn‖C0,α(RN ) := ‖zn‖L∞(RN ) + [zn]C0,α(RN ) 6 C
′ for all n ∈ N. (2.24)

In fact, fixed x, y ∈ RN , if |x− y| > 1, then (2.22) implies

|zn(x)− zn(y)| 6 2‖zn‖L∞(RN ) 6 2C 6 2C|x− y|α,

whereas, if |x− y| < 1, then |x− x+y
2 | = |y −

x+y
2 | =

|x−y|
2 < 1

2 and from (2.23) we have

|zn(x)− zn(y)| 6
∣∣∣∣zn(x)− zn

(
x+ y

2

)∣∣∣∣+

∣∣∣∣zn(y)− zn
(
x+ y

2

)∣∣∣∣ 6 C|x− y|α.
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In particular, (2.24) implies that condition (b) of Lemma 2.1 holds. Indeed, fixed η > 0 and setting
δ :=

( η
2C′

) 1
α , we obtain that, for all x, y ∈ RN such that |x− y| < δ,

|zn(x)− zn(y)| 6 C ′|x− y|α < η for all n ∈ N,
and this proves the assertion.

Therefore, we can exploit Lemma 2.1 to conclude that

lim
|x|→∞

sup
n∈N
|zn(x)| = 0.

Recalling that 0 6 un 6 zn in RN and for all n ∈ N, the above limit gives

lim
|x|→∞

sup
n∈N
|un(x)| = 0.

The proof of the theorem is now complete. �

Remark 2.1. The conclusion of Theorem 1.1 remains true without requiring any hypothesis of
sign on the sequence (un). In fact, if we use a Kato’s type inequality for (−∆)sp (see Theorem 4.1 in
Appendix), we deduce that |un| satisfies (−∆)sp|un|+V (x)|un|p−1 6 |f(x, un)| in RN which combined
with (1.1) gives (−∆)sp|un|+ σ|un|p−1 6 C̃|un|q−1 in RN . Then we can repeat the same reasonings
developed in Steps 1 and 2 by replacing un by |un|.

Remark 2.2. If V ∈ L∞(RN ), then it is not needed to introduce the sequence (zn) given in the
proof of Theorem 1.1. In fact, in this situation, we have that (−∆)spun = hn in RN , where

hn(x) := −V (x)up−1n (x) + f(x, un(x)).

Now, hn ∈ L∞(RN ) (by V ∈ L∞(RN ) and (2.2)), and using the same argument to prove (2.24), we
infer that ‖un‖C0,α(RN ) 6 C for all n ∈ N. Since un → u in Lp∗s (RN ), we can apply Lemma 2.1 to
get the desired result.

Remark 2.3. If we replace the fractional p-Laplacian operator (−∆)sp by the p-Laplacian operator
−∆p, the same conclusion of Theorem 1.1 is valid for nonnegative sequence (un) ⊂ W 1,p

V (RN ) such
that ‖un‖W 1,p(RN ) 6 C for all n ∈ N, un → u in Lp∗(RN ) and each un solves −∆pun + V (x)up−1n =

f(x, un) in RN , where f verifies (1.1) with q ∈ (p, p∗]. Henceforth, we just point out some differences.
If we test the equation with unu

p(γ−1)
L,n , then it appears the term∫
RN
|∇un|p−2∇un · ∇(unu

p(γ−1)
L,n ) dx

instead of the double integral in (2.4). Observing that∫
RN
|∇un|p−2∇un · ∇(unu

p(γ−1)
L,n ) dx

=

∫
RN

u
p(γ−1)
L,n |∇un|p dx+ p(γ − 1)

∫
{un6L}

u
p(γ−1)
L,n |∇uL,n|p dx

>
∫
RN

u
p(γ−1)
L,n |∇un|p dx,

and that, by standard calculations,

‖wL,n‖pLp∗ (RN )
6 2pS−1∗ γp

∫
RN

u
p(γ−1)
L,n |∇un|p dx,

we have, similarly to the proof of Theorem 1.1, the following inequality in place of (2.5)

‖wL,n‖pLp∗ (RN )
6 C1γ

p

∫
RN

uqnu
p(γ−1)
L,n dx,
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where C1 := 2pS−1∗ CV0
2

(here S∗ is the best constant related to the embedding D1,p(RN ) ⊂ Lp∗(RN )).
Then, the same iteration arguments used in Step 1 in Theorem 1.1 show that

‖un‖L∞(RN ) 6 C for all n ∈ N.

Moreover, instead of the result in [11], we invoke the standard regularity theory for quasilinear elliptic
equations (see for instance [13,14,16,18]) to deduce that ‖zn‖C0,α(RN ) 6 C for all n ∈ N. Repeating
the reasonings made in Step 2 of Theorem 1.1 (with the appropriate modifications), we achieve
lim|x|→∞ supn∈N |un(x)| = 0.

Corollary 2.1. Under the same assumptions of Theorem 1.1, with f ∈ C0(RN ×R), there exists a
constant C > 0 independent on n ∈ N such that

0 6 un(x) 6
C

|x|
N+sp
p−1

for all |x| >> 1 and n ∈ N.

Proof. Using Theorem 1.1, |f(x,t)|
tp−1 → 0 as t → 0 uniformly in x ∈ RN (by (1.1)), and (1.2), we can

find k0 > 0 such that

(−∆)spun +
V0
2
up−1n = f(x, un)−

(
V (x)− V0

2

)
up−1n

6 f(x, un)− V0
2
up−1n 6 0 in Bc

k0(0). (2.25)

On the other hand, by [9, Lemma 7.1], taking α := N+sp
p−1 and a positive function Υ ∈ C2(RN ) such

that Υ is radially symmetric, decreasing and Υ (x) = 1
|x|α for all |x| > 1, there exists k1 >> 1 such

that

(−∆)spΥ + c1Υ
p−1 > 0 in Bc

k1(0), (2.26)

for some c1 > 0. Define φ(x) := mΥ (rx), where m, r > 0 will be chosen later in a suitable way. By
means of (2.26), we see that

(−∆)spφ =
m

rsp
(−∆)spΥ (r ·) > − c1

rsp
φp−1 in Bc

k
r
(0),

and setting

r :=

(
2c1
V0

) 1
sp

and k2 :=
k1
r
,

we obtain that

(−∆)spφ+
V0
2
φp−1 > 0 in Bc

k2(0). (2.27)

Put κ := max{k0, k2}. Combining (2.25) and (2.27), we get

(−∆)spun +
V0
2
up−1n 6 0 6 (−∆)spφ+

V0
2
φp−1 in Bc

κ(0).

Using (2.2) and that Υ is a positive and continuous function in RN , we can choose

m :=
C3

minBκr(0) Υ
> 0

in order to have un 6 φ in Bκ(0). Then, by comparison (see [9, Theorem 7.1]), we derive that
un 6 φ in RN . Therefore,

0 6 un(x) 6
m

r
N+sp
p−1 |x|

N+sp
p−1

for all |x| > 1

r
and n ∈ N.

The proof of the corollary is now complete. �
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3. Some final comments

In this section, we discuss the remaining cases N < sp and N = sp, with s ∈ (0, 1) and p ∈ (1,∞).
Let us first assume N < sp. If q ∈ (p,∞) in (1.1), (un) ⊂W s,p

V (RN ) is such that ‖un‖W s,p
V (RN ) 6 C

for all n ∈ N, and un → u in Lr(RN ) for some r ∈ [p,∞), then the conclusion of Theorem 1.1 still
remains true. In fact, thanks to the continuous embedding W s,p(RN ) ⊂ C

0,s−N
p (RN ), we deduce

that (un) is a uniformly equicontinuous sequence and thus we can apply Lemma 2.1.
Now we suppose N = sp. We replace (1.1) by the following condition: there exists α0 > 0 such

that, for all ε > 0, q > p and α > α0 there exists Cε,q,α > 0 such that

|f(x, t)| 6 ε |t|p−1 + Cε,q,α|t|q−1ΘN,s(α|t|
p
p−1 ),

where

ΘN,s(t) := et −
jp−2∑
j=0

tj

j!
with jp := min{k ∈ N : k > p},

and assume that (un) ⊂ W s,p
V (RN ) is such that ‖un‖W s,p

V (RN ) 6 C for all n ∈ N if α0 = 0, and

lim supn→∞ ‖un‖
p
p−1

W s,p
V (RN )

< α∗
α0

if α0 > 0, for some suitable α∗ > 0, and un → u in Lr(RN ) for some
r ∈ [p,∞). Then the conclusion of Theorem 1.1 still holds. In this case, we invoke the following
version of the Trudinger-Moser inequality [20, Theorem 1.3]:

sup
u∈W s,p(RN ), ‖u‖

W
s,p
V0

(RN )
61

∫
RN

ΘN,s(α|u|
p
p−1 ) dx <∞ for all α ∈ [0, α∗). (3.1)

The main differences concern the estimates below to handle (2.4) in Step 1. Using the growth
assumption on f , we see that∫

RN
f(x, un)unu

p(γ−1)
L,n dx 6

∫
RN

V0
2
wpL,n dx+ C

∫
RN

ΘN,s(α|un|
p
p−1 )uqnu

p(γ−1)
L,n dx.

Select σ > 1 such that σ(q − p) > p. Choose t > 1 and α > 0 small if α0 = 0, while t > 1 close to 1
and α > α0 close to α0 if α0 > 0, such that

αt‖un‖
p
p−1

W s,p
V0

(RN )
< α∗ for all sufficiently large n ∈ N.

Let µ > 1 be such that 1
t + 1

σ + 1
µ = 1. From the generalized Hölder inequality, ΘN,s(a)ρ 6 ΘN,s(ρa)

for all a > 0 and ρ > 1, the boundedness of (un) in W s,p(RN ), the Sobolev embedding W s,p(RN ) ⊂
Lν(RN ) for all ν ∈ [p,∞), and (3.1), we have, for all sufficiently large n ∈ N,∫

RN
ΘN,s(α|un|

p
p−1 )uqnu

p(γ−1)
L,n dx

6 ‖un‖q−pLσ(q−p)(RN )

∫
RN

ΘN,s

αt‖un‖ p
p−1

W s,p
V0

(RN )

(
|un|

‖un‖W s,p
V0

(RN )

) p
p−1

 dx

 1
t

‖wL,n‖pLµp(RN )

6 C‖wL,n‖pLµp(RN )
,

where C > 0 is independent of L and n. On the other hand, fixed τ > µp, and exploiting wpL,n >
Φ(un)p (by (2.3)), the Sobolev embedding W s,p

V0
2

(RN ) ⊂ Lτ (RN ), and Φ(un) > 1
γwL,n, we obtain

[Φ(un)]ps,p +

∫
RN

V0
2
wpL,n dx > ‖Φ(un)‖p

W s,p
V0
2

(RN )
> C‖Φ(un)‖p

Lτ (RN )
>
C

γp
‖wL,n‖pLτ (RN )

.
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Consequently,

‖wL,n‖pLτ (RN )
6 Cγp‖wL,n‖pLµp(RN )

,

and letting L→∞ we find

‖un‖Lγτ (RN ) 6 C
1
pγ γ

1
γ ‖un‖Lµpγ(RN ).

Therefore, taking κ := τ
µp > 1, we get, for all m ∈ N,

‖un‖Lτκm (RN ) 6 C
∑m
i=1 p

−1κ−iκ
∑m
i=1 iκ

−i‖un‖Lτ (RN ),

from which ‖un‖L∞(RN ) 6 C for all sufficiently large n ∈ N.

4. Appendix

We establish a Kato’s type inequality [12] for the fractional p-Laplacian operator.

Theorem 4.1. Let s ∈ (0, 1) and p ∈ (1,∞). Let V ∈ C0(RN ) with V (x) > V0 > 0 in RN , and
g ∈ L1

loc(RN ) such that gξ ∈ L1(RN ) for all ξ ∈W s,p
V (RN ). Let u ∈W s,p

V (RN ) be such that∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
(ψ(x)− ψ(y)) dxdy +

∫
RN

V (x)|u|p−2uψ dx =

∫
RN

gψ dx,

(4.1)

for all ψ ∈W s,p
V (RN ). Then it holds∫∫

R2N

||u(x)| − |u(y)||p−2(|u(x)| − |u(y)|)(ϕ(x)− ϕ(y))

|x− y|N+sp
dxdy +

∫
RN

V (x)|u|p−1ϕdx

6
∫
RN

sign(u)gϕ dx, (4.2)

for all ϕ ∈W s,p
V (RN ) such that ϕ > 0 in RN , where

sign(u)(x) :=

{
u(x)
|u(x)| if u(x) 6= 0,

0 if u(x) = 0.

Proof. The proof is inspired by some arguments found in [3, Theorem 17.3.5] and [5, Theorem 3.1].
We start by recalling the following useful inequality (see [5, Lemma A.1]): if ζ : R → R is a C1

convex function, ε > 0, Jp(t) := |t|p−2t and Jp,ε(t) := (ε+|t|2)
p−2
2 t with t ∈ R, then

Jp(a− b)[AJp,ε(ζ ′(a))−BJp,ε(ζ ′(b))]

>
(
ε(a− b)2 + (ζ(a)− ζ(b))2

) p−2
2 (ζ(a)− ζ(b))(A−B) for all a, b ∈ R, A,B > 0.

(4.3)

Next we prove that (4.2) is valid for all ϕ ∈ C∞c (RN ) such that ϕ > 0 in RN . Fix ϕ ∈ C∞c (RN )
such that ϕ > 0 in RN . For δ > 0 sufficiently small, we define the smooth convex Lipschitz function
ζδ(t) :=

√
t2 + δ2 for t ∈ R. Observe that, for all t, τ ∈ R,

|ζ ′δ(t)| 6 1, |ζ ′δ(t)− ζ ′δ(τ)| 6 1

δ
|t− τ |. (4.4)

We first consider the case p > 2. Let ψδ := ϕ|ζ ′δ(u)|p−2ζ ′δ(u). Notice that ψδ ∈W s,p
V (RN ) because ϕ ∈

C∞c (RN ), u ∈ W s,p
V (RN ), |ζ ′δ(u)|p−2ζ ′δ(u) is bounded (by (4.4)) and Lipschitz (thanks to ||a|p−2a−

|b|p−2b| 6 Cp(|a|+ |b|)p−2|a− b| for all a, b ∈ R, (4.4) and [u]s,p <∞), and thus the assertion follows
from [3, Lemma 1.1.4]. Then, inserting ψ = ψδ into (4.1), and applying (4.3) with

ζ := ζδ, ε := 0, a := u(x), b := u(y), A := ϕ(x), B := ϕ(y),



14 V. AMBROSIO

we have∫∫
R2N

|ζδ(u(x))− ζδ(u(y))|p−2(ζδ(u(x))− ζδ(u(y)))

|x− y|N+sp
(ϕ(x)− ϕ(y)) dxdy +

∫
RN

V (x)|u|p−2uψδ dx

6
∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
(ψδ(x)− ψδ(y)) dxdy +

∫
RN

V (x)|u|p−2uψδ dx

=

∫
RN

gψδ dx

and so ∫∫
R2N

|ζδ(u(x))− ζδ(u(y))|p−2(ζδ(u(x))− ζδ(u(y)))

|x− y|N+sp
(ϕ(x)− ϕ(y)) dxdy

+

∫
RN

V (x)|u|p−2uψδ dx 6
∫
RN

gψδ dx.

Next we show that we can pass to the limit as δ → 0 in the above relation to deduce (4.2). By virtue
of ζδ(t)→ |t| as δ → 0 and∣∣∣∣ |ζδ(u(x))− ζδ(u(y))|p−2(ζδ(u(x))− ζδ(u(y)))

|x− y|N+sp
(ϕ(x)− ϕ(y))

∣∣∣∣
6
|ζδ(u(x))− ζδ(u(y))|p−1|ϕ(x)− ϕ(y)|

|x− y|N+sp

6
|u(x)− u(y)|p−1|ϕ(x)− ϕ(y)|

|x− y|N+sp
∈ L1(R2N ),

where we have used the fact that ζδ(t) has Lipschitz constant equals to one, we can apply the
dominated convergence theorem to see that

lim
δ→0

∫∫
R2N

|ζδ(u(x))− ζδ(u(y))|p−2(ζδ(u(x))− ζδ(u(y)))

|x− y|N+sp
(ϕ(x)− ϕ(y)) dxdy

=

∫∫
R2N

||u(x)| − |u(y)||p−2(|u(x)| − |u(y)|)(ϕ(x)− ϕ(y))

|x− y|N+sp
dxdy.

Since ζ ′δ(t) → sign(t) as δ → 0 and |V (x)|u|p−2uψδ| 6 V (x)|u|p−1ϕ ∈ L1(RN ) (in light of (4.4),
u ∈ W s,p

V (RN ) and ϕ ∈ C∞c (RN )), we can again invoke the dominated convergence theorem to
obtain

lim
δ→0

∫
RN

V (x)|u|p−2uψδ dx =

∫
RN

V (x)|u|p−1ϕdx.

Finally, thanks to |ζ ′δ(t)|p−2ζ ′δ(t)→ sign(t) as δ → 0 and |gψδ| 6 |g|ϕ ∈ L1(RN ) (owing to (4.4) and
the assumption on g), the dominated convergence theorem yields∫

RN
gψδ dx→

∫
RN

sign(u)gϕ dx.

When p ∈ (1, 2), ψδ is no more a legitimate test function and we consider a slight modification of
it. More precisely, we pick ψ = ψ̃δ := ϕ(δ+ |ζ ′δ(u)|2)

p−2
2 ζ ′δ(u) in (4.1). Observe that ψ̃δ ∈W s,p

V (RN )

because ϕ ∈ C∞c (RN ), u ∈W s,p
V (RN ), (δ + |ζ ′δ(u)|2)

p−2
2 ζ ′δ(u) is bounded (in view of |(δ + t2)

p−2
2 t| 6

|t|p−1 for all t ∈ R and (4.4)) and Lipschitz (due to |(δ+ t2)
p−2
2 t− (δ+ τ2)

p−2
2 τ | 6 (p− 1)δ

p−2
2 |t− τ |

for all t, τ ∈ R, (4.4) and [u]s,p <∞), and hence the assertion follows from [3, Lemma 1.1.4]. Using
(4.3) with

ζ := ζδ, ε := δ, a := u(x), b := u(y), A := ϕ(x), B := ϕ(y),
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we get∫∫
R2N

[δ(u(x)− u(y))2 + (ζδ(u(x))− ζδ(u(y)))2]
p−2
2 (ζδ(u(x))− ζδ(u(y)))

|x− y|N+sp
(ϕ(x)− ϕ(y)) dxdy

+

∫
RN

V (x)|u|p−2uψ̃δ dx

6
∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
(ψ̃δ(x)− ψ̃δ(y)) dxdy +

∫
RN

V (x)|u|p−2uψ̃δ dx

=

∫
RN

gψ̃δ dx

and thus∫∫
R2N

[δ(u(x)− u(y))2 + (ζδ(u(x))− ζδ(u(y)))2]
p−2
2 (ζδ(u(x))− ζδ(u(y)))

|x− y|N+sp
(ϕ(x)− ϕ(y)) dxdy

+

∫
RN

V (x)|u|p−2uψ̃δ dx 6
∫
RN

gψ̃δ dx.

In what follows we justify the passage to the limit as δ → 0 in the above relation. Since p ∈ (1, 2),
we see that∣∣∣∣∣ [δ(u(x)− u(y))2 + (ζδ(u(x))− ζδ(u(y)))2]

p−2
2 (ζδ(u(x))− ζδ(u(y)))

|x− y|N+sp
(ϕ(x)− ϕ(y))

∣∣∣∣∣
6
|ζδ(u(x))− ζδ(u(y))|p−1|ϕ(x)− ϕ(y)|

|x− y|N+sp

6
|u(x)− u(y)|p−1|ϕ(x)− ϕ(y)|

|x− y|N+sp
∈ L1(R2N ),

and using ζδ(t) → |t| as δ → 0, (δ + |ζ ′δ(t)|2)
p−2
2 ζ ′δ(t) → sign(t) as δ → 0, |ψ̃δ| 6 |ζ ′δ(t)|p−1ϕ 6 ϕ,

V (x)|u|p−1ϕ ∈ L1(RN ) and |g|ϕ ∈ L1(RN ), as before we can apply the dominated convergence
theorem to achieve our aim. Hence we have proved that (4.2) holds for all ϕ ∈ C∞c (RN ) such that
ϕ > 0 in RN . Because C∞c (RN ) is dense in W s,p

V (RN ), we get the assertion. �
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