Estimation of linear models with time-varying parameters can be accomplished in a variety of ways, each making diferent assumptions, with varying degrees of accuracy and computational complexity. In this paper, we compare diferent gretl packages by means of simulated and real data focusing on both statistical and computational aspects. Our fndings show that all the estimators provide similar results under ideal conditions, but the practitioner’s choice could be far from obvious.

Linear models with time-varying parameters: a comparison of different approaches / Lucchetti, Riccardo; Valentini, Francesco. - In: COMPUTATIONAL STATISTICS. - ISSN 0943-4062. - (2024). [10.1007/s00180-023-01452-3]

Linear models with time-varying parameters: a comparison of different approaches

Lucchetti, Riccardo;Valentini, Francesco
2024-01-01

Abstract

Estimation of linear models with time-varying parameters can be accomplished in a variety of ways, each making diferent assumptions, with varying degrees of accuracy and computational complexity. In this paper, we compare diferent gretl packages by means of simulated and real data focusing on both statistical and computational aspects. Our fndings show that all the estimators provide similar results under ideal conditions, but the practitioner’s choice could be far from obvious.
2024
File in questo prodotto:
File Dimensione Formato  
Lucchetti_Linear-models-with_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/325868
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact