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Abstract
Estimation of linear models with time-varying parameters can be accomplished in a 
variety of ways, each making different assumptions, with varying degrees of accu-
racy and computational complexity. In this paper, we compare different gretl pack-
ages by means of simulated and real data focusing on both statistical and computa-
tional aspects. Our findings show that all the estimators provide similar results under 
ideal conditions, but the practitioner’s choice could be far from obvious.

Keywords  Time-varying parameters · Linear model · Gretl

1 � The case for time‑varying parameters in econometrics

In a discipline such as econometrics, where empirical regularities are the outcome 
of social phenomena and institutions, rather than physical quantities, it is perfectly 
natural to imagine that the main characteristics of a statistical model may be subject 
to some change over time, either smooth or abrupt. Therefore, econometric models 
able to capture potential variability over time of the data generating process have 
been of considerable interest for both theoretical and practical applications.

Moreover, in economics the theoretical models are typically subject to a ceteris-
paribus clause: all influences not explicitly modeled are, for theoretical purposes, 
assumed as being constant, although these other influences are conceived to actu-
ally change over time. Such changes, if not too pronounced, may not destroy the 
conclusions reached in the theoretical ceteris-paribus model, but will go along 
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with parameter changes. In other words, quantitative economic relationships typi-
cally connect indices involving prices and quantities with ever changing weight-
ing schemes, all affected by technological and social changes. This makes it highly 
implausible to exclude the possibility of time-varying coefficients a priori. As 
Keynes put it: unlike in the case of a the typical natural science, the subject of eco-
nomics “is, in too many respects, not homogeneous through time.” (see Johnson and 
Moggridge 1987).

1.1 � Some approaches to time‑varying parameters estimation

The econometric literature on time-varying parameters is too large to be effectively 
surveyed here, and may well be the object of an autonomous paper (see eg Fan and 
Zhang 1999). In this section, we will only briefly survey the main contributions that 
are instrumental in motivating the evidence we present in this paper.

One line of research has concerned situations in which one assumes that several 
regimes exist, and during each regime parameters are stable. This idea provides the 
foundation not only for the classic work by Chow (1960), but also for more recent 
contributions such as Bai and Perron (2003) or Markov-switching models à la Ham-
ilton (1989). Alternatively, one could imagine that parameter change is something 
that happens gradually over time. In some models, such as Smooth Transition Mod-
els (Chan and Tong 1986; Teräsvirta 1994), the change in the Data Generating 
Process is modeled via a small set of hyper-parameters. In others, the path through 
time of parameters is described with different, more agnostic modeling choices. Col-
lectively, these models go under the customary name of time-varying-parameters 
models (see eg Cooley and Prescott 1976; Harvey 1990); these are the object of our 
interest.

Although the typical approach relies on the Kalman filter (KF) apparatus (Athans 
1974; Harvey 1990), several other methods have been developed. Among others, 
we focus on the Flexible Least Squares (FLS) proposed by Kalaba and Tesfatsion 
(1989, 1990) and more recent contributions such as moments estimators (VC) put 
forward by Schlicht (2021) and semi-parametric estimators relying on kernel-based 
(KB) inference (Giraitis et al. 2014, 2018) which has been extended to Instrumental 
Variables (IV) models (Giraitis et al. 2021).

In the following we compare the finite sample performance of four methods, 
namely KF, VC, KB and FLS, on simulated and real data. The former experiment is 
reported in Sect. 3. As for their usage on real data, Sect. 4 illustrates a simple appli-
cation to Okun’s law.

We find that the four methods considered behave (from a qualitative point of 
view) very similarly on simulated data, but real-life applications pose several chal-
lenges for practitioners, such as implementation difficulties, numerical instability 
and computational complexity that may hamper the viability of the aforementioned 
methods. In this work, we aim at investigating these issues so as to provide a set of 
useful guidelines for practitioners.
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We perform our experiments in gretl since most of the techniques at issue are 
available as built-in functions or user-written packages. State space techniques can 
be implemented in gretl by means of the native support for such models. The VC 
estimator (Schlicht 2021) is implemented in the TVC package which, along with 
the moment estimator, also allow users to estimate parameters by Maximum Likeli-
hood under the assumption of Gaussian innovations. Further, the package ketvals 
provides users a set of functions aimed at performing non-parametric least squares 
estimation for linear models with time varying parameters with or without (KB) 
instrumental variables, as proposed by Giraitis et al. (2021). Along with parameter 
estimates and their standard errors, ketvals provides users with several functions 
aimed at supporting the visualization of results. The FLS package provides Kalaba 
and Tesfatsion (1989)’s estimator with a few extensions considered in Lütkepohl and 
Herwartz (1996).

2 � Methods for estimating time‑varying linear models

The standard linear model with time-varying parameters is given by the following 
equation,

where yt is the dependent variable, xt is a k × 1 vector of regressors, the conformable 
vector of parameters � t is assumed to vary over time and where �t denote shocks, 
which are assumed to be homoskedastic, uncorrelated both serially and with the 
regressors.

2.1 � Flexible least squares

The FLS (Flexible Least Squares) method was proposed by Kalaba and Tesfatsion 
(1989) and can be described as follows: given the equations

the FLS estimator is based on minimizing the criterion function

where � is a user specified parameter such that:

•	 � → 0 : large V(�̂ t) , small V(êt)
•	 � → ∞ : V(�̂ t) → 0 and �̂ t → �̂OLS.

(1)yt = x
�
t
� t + �t with t = 1,… , T ,

(2)et = yt − x
�
t
� t

(3)ut = Δ� t = � t − � t−1

(4)C(�, T) =

T∑

t=1

e2
t
+ �

T∑

t=2

u
�
t
ut
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 Kalaba and Tesfatsion (1990) refer to the parameter � as a “Lagrange multiplier”; it 
can be thought of a “smoothing parameter”, in that higher values produce smoother 
series of coefficients. Estimation is performed via an algorithm described in detail in 
Kalaba and Tesfatsion (1989), Sect. 5, which is usually very fast and efficient.

Note that this approach is purely descriptive, in that no distributional assumptions 
are made on any of the magnitudes in Eqs. (2)–(3), and therefore standard errors for 
the estimated coefficients are not available. The model above was later extended by 
Lütkepohl and Herwartz (1996) in various directions. Of all the extensions proposed 
there, we only consider a slight generalization of (4) given by

where D is a symmetric, positive definite metric matrix. For normalization pur-
poses, we require the trace of D to be equal to k. Therefore, the original FLS model 
corresponds to D = I . A rather natural alternative would be a scalar multiple of X′X , 
which would take care of different unit of measurement of the regressors and cor-
relation between them; we call this the “normalized” metric and it will be denoted as 
FLSN. In our implementation, the scalar equals k∕tr

(
X�X

)
 to satisfy the normaliza-

tion requirement above.
The reader will no doubt notice that the FLS estimator is very close in spirit to the 

Hodrick–Prescott filter, with the exception that the penalty term considers first dif-
ferences instead of second differences. Experimentation suggests that the � param-
eter in the FLS filter is roughly equivalent to the square root of that for the HP filter.

What we call the FLS statistic �̂ t is in fact the one described in Kalaba and Tes-
fatsion (1989), Sect. 5.4 and described as the “smoothed” estimator, as opposed to 
“filtered”. Note that “smoothing”, in this context, has nothing to do with the value 
of � , but is a term borrowed from the state-space literature and indicates that the �̂ t 
estimator is based on the whole sample. Conversely, the “filtered” estimate of � t , 
that we do not consider in this paper, is based on the data from 1 to t only.

2.2 � The VC estimator

The VC estimator (Schlicht 2021) can be thought of as a generalization of the FLS 
estimator, and is implemented in the TVC package. Starting from Eqs. (2) and (3), 
the following assumptions on the moments of et and ut are made:

In other words, the VC estimator is derived under the assumption that the regression 
coefficients evolve through time as orthogonal random walk processes. On the other 
hand, no distributional assumptions are used, and the VC estimator has a natural 

(5)C(�, T) =

T∑

t=1

e2
t
+ �

T∑

t=2

u
�
t
Dut

(6)E(et) = 0 and E(e2
t
) = �2

(7)E(ut) = 0 and E(utu
�
t
) = diag(�2

1
,… ,�2

K
)
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interpretation as a method-of-moments estimator. However, it can be proven that the 
VC estimator approaches the ML estimator under normality for T → ∞.

The VC estimator minimizes the objective function (5), where

with 𝛾k = 𝜎̂2∕𝜙̂2
k
 . However, a subset of the coefficients can be kept fixed by setting 

the corresponding �2
i
 to 0. Minimization is performed by numerical optimization on 

the �k parameters.
In the TVC gretl package, this is accomplished by minimizing a criterion func-

tion which involves the inversion of a square matrix M of dimension T ⋅ k . As is well 
known, the complexity of the matrix inversion operation is O(s3) , where s is the size 
of the matrix; therefore, Schlicht’s algorithm may become rather slow if either T or k 
are large. We conjecture that this aspect can be improved by taking into account the 
particular structure of M, and research is currently under way on this aspect.

2.3 � State‑space modeling

State-space models provide a very natural way of representing models with time-
varying parameters, where the law of motion of the vector � t may be specified in a 
very flexible way. Moreover, state space modeling is a standard tool for the analysis 
of time series, so that the theoretical apparatus is well-known and the array of avail-
able software is formidable.1

In general, we may write the state-space representation of the time-varying 
parameters of a linear model as

as general as this formulation is, it remains a fairly standard state-space model.
This formulation nests several special cases that have been considered in the lit-

erature: for example, the following setup

corresponds to the case when the time path of parameters is assumed to be described 
by a “local linear trend” model (see Harvey 1990, for a taxonomy of “structural time 

D = diag(�1,… , �K)

Measurement Equation:yt = x
�
t
Z�t + et

Transition Equation:�t = � + T�t−1 + ut;

Z = [I 0]

�t =

[
� t

�t

]

� = 0

T =

[
I I

0 I

]

1  The special issue of the Journal of Statistical Software (Commandeur et al. 2011) provides a compre-
hensive review, although a bit dated. For example, the description of the gretl implementation given in 
Lucchetti (2011) is completely out of date.
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series models”). In this kind of model, � t is an I(2) process, and therefore typically 
exhibits very smooth time paths.

Conversely, one could assume that � t is a stationary vector process: one of the 
alternatives arises when

with Φ is a matrix whose eigenvalues are smaller than 1 in absolute value. Here, the 
elements of � t are stationary VAR(1) processes, fluctuating around a long-term mean 
equal to �.

In this paper, however, we will concentrate on the choice that is by far the most 
popular among practitioners,2 which is also compatible with the VC model described 
earlier, in which the � t vector is assumed to be a random walk process:

ML estimation is fairly standard under the customary normality assumptions and 
independence assumptions:

by using standard numerical optimization methods as explained, for example, in 
Pelagatti (2015), Sect. 5.4. In this article, we maximize the log-likelihood by means 
of the limited-memory variant of the BFGS method (LBFGS) by Byrd et al. (1995), 
which proved to be very effective.

2.4 � Kernel‑based method

Kernel-based inference provides a powerful generalization of the traditional roll-
ing-window technique: the approach we use here is the one developed in Giraitis 
et al. (2014) and later developed in a number of derived papers such as Giraitis et al. 
(2021), where an extension to instrumental-variable estimation is developed.

The estimator we use here is the time-varying OLS estimator (TV-OLS, hereaf-
ter) defined as

Z = I

�t = � t

� = (I − Φ)�

T = Φ,

Measurement Equation:yt = x
�
t
� t + et

Transition Equation:� t = � t−1 + ut

et ∼ N(0, �2
e
)

E(ut) = 0

E(utu
�
t
) = Σu

E(etu
�
t
) = 0

�.

2  Among the many examples, a few recent ones are Cimadomo and D’Agostino (2016), Cai and Wu 
(2021) or Bjørnland and Thorsrud (2019).
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where bH,|j−t| denotes a kernel weight and H = Th is the bandwidth given by a user-
specified parameter h. The kernel weighting function could be any of the many ones 
considered in ordinary nonparametric estimation (Gaussian, Epanechnikov, etc.). 
The rolling-window approach is but a special case, where the kernel function is 
rectangular.

In a way, this estimator is similar in spirit to the FLS estimator, in that no assump-
tion is made on the law of motion for the � t coefficients, which are only assumed to 
vary “smoothly” through time, either as smoothly varying deterministic functions 
or smoothly varying persistent stochastic processes (see Assumptions 2 and 3 in 
Giraitis et al. (2021), respectively). On the other hand, suitable regularity conditions 
on the distribution of the disturbance term �t in Eq. (1) make it possible to compute 
standard errors for the estimated coefficients and perform various inference proce-
dures, such as hypothesis tests.

The choice for the kernel function and the associated bandwidth is up to the user 
and is, in many cases, highly subjective: the main elements to consider are whether 
to choose a finite- or infinite-support kernel function and the choice of the smooth-
ing parameter h. The latter choice can be semi-automated by employing a modified 
version of the AIC criterion, due to Cai (2007). We will denote the KB estimator 
obtained with the automatic bandwidth selection as KBA. As shown in Lucchetti 
and Valentini (2023), however, results can be in some cases highly sensitive to these 
choices, and in some cases it is advisable to complement statistical procedures with 
qualitative economic reasoning.

Our implementation of choice for this technique is the gretl ketvals package, in 
which the estimator is computed by means of kernel-weighted least squares tech-
nique and poses no particular numerical challenge (no numerical optimization is 
needed), so estimation is usually very fast and stable.

3 � Simulation experiments

This section analyses the properties and the computational costs3 of the estimators at 
issue by using simulated data. The estimators we consider are: 

KF:	� State space model with random walk coefficients (see Sect. 2.3).

KB:	� Kernel-based (see Sect. 2.4) with a-priori fixed bandwidth ( h = 0.66 ) and 
Gaussian kernel.

(8)𝜷 t =

(
T∑

j=1

bH,|j−t|xjx
�
j

)−1( T∑

j=1

bH,|j−t|xjy
�
j

)
,

3  The experiments in this section are run on a Debian Linux system with n.1 Intel(R) Core(TM) i3-4150 
CPU 3.50 GHz and 8 GB of RAM. The Gretl version is 2023b.
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KBA:	� Kernel-based with automatic (modified AIC) bandwidth, as proposed by 
Lucchetti and Valentini (2023) and Gaussian kernel.

VC:	� Schlicht’s VC estimator (see Sect. 2.2).

FLS:	� Plain FLS estimator with � = 100 (see Sect. 2.1).

FLSN:	� Normalized version of the FLS estimator.

First, we propose a simple exercise where we generate one realization only and 
show how estimated coefficients mimic the path of the true parameters in a single 
sample. The purpose of this experiment is to give the reader an intuitive way to visu-
alize the differences between the methods we compare.

Next, we perform a Monte Carlo experiment in order to assess the finite sam-
ple performance and the computational burden of the aforementioned techniques. 
Finally, we test the sensitivity of the CPU-time taken by the different routines to dif-
ferent sample sizes and number of regressors.

We want to stress that the estimators above requires the user to make specific 
choices. Table 1 summarizes the potential sources of arbitrariness induced by user 
specified options. Hence, the following results have to be considered conditional on 
such discretion.

3.1 � Three simple experiments

We now show three simple simulation experiments, with different data generat-
ing processes for the time-varying coefficients. In all the cases, we consider, for 
t = 1,… , T = 128 , the model

where we include J = 2 covariates xj,t , with j = {1, 2} , following a standard Gauss-
ian distribution whose correlation is governed by a parameter � = {0, 0.5}.

(9)yt = x1,t�1,t + x2,t�2,t + �t

Table 1   Sources of arbitrariness Estimator Initial conditions Hyper-parameters

KF �
t
= �̂

KB
–

Z = I

T = I

V(u
t
) = I∕100

KB – Gaussian kernel, 
h = 0.66 (band-
width)

KBA – Gaussian kernel
VC – –
FLS - � = 100 (smoothing)
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As a first experiment, we generate time-varying parameters which conform 
to the assumptions of the VC and KF estimators. Therefore we initially generate 
model parameters �j,t as cumulated normally distributed draws with variance 0.01 
so as to produce a time path of coefficient in line the assumption, common to all 
the estimator at issue, of “smooth” or “well behaved” evolution over time. The 
error term �t is also drawn from a zero mean normal distribution with standard 
deviation equal to 0.7.

Figure  1 reports the time paths of estimated coefficients along with the true 
values of the model parameters in a typical run. In general, all the estimators per-
form similarly and float around the true �j,t , being able to reproduce the path of 
the time-varying coefficients for most of the sample. All the methods also exhibit 
the problem of overestimating �2,t in the final part of the sample.

It is worth stressing that the KB and FLS estimators are quite sensitive to the 
choice of the smoothing parameters which are fixed at h = 0.66 and � = 100 , 

Fig. 1   Simulation with random walk parameters. Note: �1 and �2 denote the true values of the model 
parameters. Covariates are generated with � = 0.5
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respectively. In particular, KB and KBA seem to produce very smooth time paths 
for the coefficients, while FLS and FLSN are more erratic and close to the ones 
obtained with methods relying on parametric assumptions such as KF and VC.

In our second experiment, we consider a data generating process that vio-
lates the “smoothness” of the coefficients time path, and is similar in spirit to the 
numerical experiments carried out in Kalaba and Tesfatsion (1990) and Giraitis 
et al. (2014).

In this case, we generate the coefficients as

so that the first term gives coefficients with a sinusoidal path and the second term 
is a “jump” that occurs at a certain point in time. Again, we produce a one-sample 
experiment, whose results are reported in Fig. 2. Note that the results for KF and VC 
are so similar that they are visually indistinguishable.

(10)𝛽j,t = cos((t ⋅ j)∕32) + (2 + 2 ⋅ j) ⋅ 1

{
t >

T

j + 1

}

Fig. 2   Simulation with jumps in the coefficients. Notes: �1 and �2 denote the true values of the model 
parameters generated according to Eq. (10). Covariates are generated with � = 0
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As we can see, the response to a violation of “smooth” changes in � is not uni-
form. KBA, KF and VC are able to rapidly adjust and capture the abrupt shifts in the 
time path of the coefficients while FLS and KB with a fixed bandwidth display some 
stickiness and adjust slowly since their volatility is limited by the fixed smoothness 
parameters � and h, respectively. Nevertheless, the price that one pays for the greater 
responsiveness of KBA, KF and VC is that they may pick some spurious movement 
in the estimated coefficient that is just not there in the true one: consider, for exam-
ple the spurious peak occurring in �1,t around observation 40.

Finally, we consider the special case of a data generating process with time-
constant parameters; it is interesting to consider this case because in real-life cases 
the researcher does not know if parameters are time-changing. Of course, several 
test for structural stability are available, such as for example the CUSUM test, but 
that is beyond the point we are making here, that is evaluating the tendency of the 
various methods we compare to generate parameter volatility as a spurious artifact. 

Fig. 3   Simulation with time constant coefficients. Notes: �1 and �2 denote the true values of the model 
parameters. Covariates are generated with � = 0
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Therefore, we set �1,t = 1 and �2,t = 0.5 for t = 1,… , 128 . The estimation results are 
reported in Fig. 3.

In line with previous results, the response is not homogeneous. Again, KBA, KF 
and VC produce similar results and the related estimated coefficients are essentially 
overlapping and display almost no time variability around the corresponding (time-
constant) least squares estimates. Conversely, KB, FLS and FLSN show a much 
larger variability even though they also appear to gravitate towards the simple OLS 
estimates. In light of the previous exercises, the result is quite obvious. Here, the 
fixed smoothing parameters for KB and FLS force the estimated coefficient to float 
excessively so that the time-variability can be reduced by the tuning hyper-parame-
ters, accordingly.

These simple exercises give us some first insights about the behaviour of the esti-
mators under consideration. In the next section we rely on a Monte Carlo experi-
ment in order to properly analyse the finite sample performance of the estimators.

3.2 � Monte Carlo experiments

We implement our Monte Carlo experiment by generating data via the two cases 
examined in Sect. 3.1, first with random-walk coefficients and then with jumps. We 
considered four scenarios by combining T = {64, 128} and � = {0, 0.5} and for each 
of them we perform R = 1000 replications from which we collect the median devia-
tion (MD) and the median absolute deviation (MAD) of the estimators,4 defined as

where 𝛽  denotes a generic estimator and the superscript r refers to the r-th Monte 
Carlo sample.

Table 2 reports the simulation results for the random-walk case. For each of the 
six methods, the table includes the MD and MAD indices associated to the two 
parameters along with the average CPU time required to get estimates.

The results corroborate the visual impressions described in Sect. 3.1, that the 
six estimators behave similarly. All of them are well-anchored to the true value of 
the coefficients in the sense that the MD index is always close to zero, meaning 
that none of the techniques produce systematically divergent estimates. Moreover, 
the MAD indices (which are are almost identical across the estimators) show that 
the median deviations from the true values are modest in size and tend to shrink 
as the sample size grows (comparing the T = 64 and T = 128 cases).

On the other hand, CPU times are markedly different. Of course, estimators 
such as KF and VC, which require numerical optimization, are the slowest, while 

MD =
1

R

1000∑

r=1

medt=1,…,T

(
𝛽r
t
− 𝛽r

t

)

MAD =
1

R

1000∑

r=1

medt=1,…,T |𝛽rt − 𝛽r
t
|

4  We also considered mean deviation and mean absolute deviation which are not reported here since the 
related results are equivalent to those obtained with the median.
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the KB and FLS routines are the fastest and require a small fraction of a second. 
The KBA estimator has intermediate performance, since numerical optimization 
is limited to one parameter only (the bandwidth).

The KF and VC estimators display comparable CPU time with T = 64 , about 
0.3 s on average. In the second scenario with T = 128 , the relative performance is 
stable. As one might have expected, the correlation between covariates plays no 
role here. In order to provide a comprehensive view of the results, Fig. 4 shows 
the distribution of the CPU times required by the competing estimators. It is 
worth stressing that none of the candidates appear to be sensitive to particular 
data figures since the boxplots do not display high variability nor huge outliers.

We then repeat the experiment above, but with parameters generated according to 
Eq. (10). Results are reported in Table 3.

Table 2   Simulation results: random walk parameters

T �
1,t

�
2,t

CPU time (sec)

MD MAD MD MAD

� = 0

64 KF − 0.0007 0.1164 − 0.0015 0.1229 0.325
KB − 0.0005 0.1134 − 0.0009 0.1166 0.001
KBA − 0.0010 0.1143 − 0.0012 0.1203 0.030
VC − 0.0010 0.1152 − 0.0025 0.1215 0.276
FLS − 0.0008 0.1117 − 0.0003 0.1168 0.001
FLSN − 0.0008 0.1121 − 0.0006 0.1172 0.001

128 KF 0.0019 0.1051 0.0004 0.1048 0.644
KB 0.0009 0.1145 0.0003 0.1116 0.002
KBA 0.0020 0.1068 0.0000 0.1060 0.132
VC − 0.0013 0.1057 0.0004 0.1033 1.642
FLS 0.0033 0.1062 0.0007 0.1037 0.002
FLSN 0.0033 0.1064 0.0005 0.1040 0.001

� = 0.5

64 KF 0.0023 0.1346 − 0.0049 0.1336 0.286
KB 0.0017 0.1290 − 0.0042 0.1270 0.001
KBA 0.0004 0.1298 − 0.0039 0.1311 0.030
VC 0.0024 0.1293 − 0.0030 0.1292 0.275
FLS 0.0020 0.1240 − 0.0039 0.1235 0.001
FLSN 0.0024 0.1282 − 0.0033 0.1282 0.001

128 KF 0.0007 0.1198 − 0.0022 0.1149 0.588
KB 0.0005 0.1235 − 0.0002 0.1195 0.002
KBA 0.0004 0.1212 − 0.0004 0.1180 0.136
VC 0.0008 0.1168 0.0013 0.1126 1.786
FLS 0.0010 0.1172 − 0.0006 0.1129 0.002
FLSN 0.0007 0.1212 − 0.0007 0.1174 0.001
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In this case, the estimators exhibit different behaviours. The KF, KBA and VC 
estimators show substantially smaller values of both MD and MAD than the FLS 
and KB estimators, the difference being more pronounced for MAD. This is in line 
with what we saw in the previous section, namely a marked difference across the 
estimators in the behaviour of coefficients in the neighborhood of jumps in the true 
parameters. Since this is a systematic effect, we end up with large deviations from 
the truth if the estimates are “too smooth” (or in other words the true parameters are 
“too jumpy”). Overall, it looks as if estimators relying on parametric assumptions, 
such as KF and VC, are relatively robust even when those assumptions are violated; 
and the data-driven smoothing of KBA also delivers relatively robust results com-
pared to simple FLS and KB.

As one referee pointed out, there is an asymmetry here. All the methods under 
consideration allow—in some form or other—for gradual changes in the parameter 
estimates, but one subset of the methods also allows for abrupt changes and another 
subset does not. So if the true parameters do in fact change abruptly, the second sub-
set will under-perform relative to the first in a way that is not counter-balanced by 
systematically better performance in case of gradual change in the parameters.

Fig. 4   Distribution of the CPU times, in log10 seconds
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3.3 � CPU time and problem size

To conclude our analysis on simulated data we explore the sensitivity of the 
CPU-time to sample size and number of regressors. Here we go back to the one-
sample experiment based on Eq.  (9) where we let the number of regressors to 
vary in J = {2, 4, 8} and the sample size in T = {128, 256, 512} . For each design 
we report the CPU-times for the estimators in Table 4. Here, the experiment run 
on a Debian Linux computer with two Intel Xeon CPUs E5-2640 v4 2.40 GHz, 
250 GB of RAM. The Gretl version is 2023b.

The clearest result is that the time required by each estimator depends, quite 
obviously, on whether they require numerical optimization or not. This explains 
why KF and VC emerge as the most costly methods, whereas FLS and KB are the 
least demanding. The adaptive version of KB, KBA, sits somewhere in the mid-
dle, since numerical optimization is restricted to one parameter only (the band-
width), so it does not scale with the number of parameters.

According to the results, KB, KBA and FLS methods seem to show an order 
of complexity roughly linear in both J and T. Conversely, KF and VC generally 
show a quadratic relation in J and T with negligible second-order effects. Overall, 
this simple experiment confirms that the rank, in terms of CPU time, is stable 
with larger T and J.

In order to put compute time into perspective from the practitioner’s point of 
view, it should be noted that, for most time-series data, sample sizes are not very 
large (except perhaps with high-frequency financial market data). The results we 
obtain seem to indicate that CPU times are unlikely to be prohibitive in most 
practical applications, with the possible exception of VC. Nevertheless, CPU time 
may have to be taken in consideration if one is running these procedures itera-
tively, maybe in the context of a simulation experiment. For these cases, the two 

Table 3   Simulation results: �j,t 
with jumps

T �
1,t

�
2,t

MD MAD MD MAD

64 KF 0.0017 0.2247 − 0.0010 0.2553
KB 0.0858 0.6201 − 0.0159 0.8280
KBA − 0.0004 0.1755 − 0.0004 0.1750
VC 0.0013 0.2172 − 0.0005 0.2489
FLS 0.0680 0.4243 − 0.0468 0.5708
FLSN 0.0680 0.4155 − 0.0409 0.5617

128 KF − 0.0050 0.1684 0.0010 0.2013
KB − 0.1326 0.3440 − 0.4093 0.6566
KBA − 0.0022 0.1411 − 0.0012 0.1433
VC − 0.0052 0.1654 0.0007 0.1989
FLS − 0.0393 0.1637 − 0.1437 0.2744
FLSN − 0.0383 0.1619 − 0.1410 0.2716
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KB variants are advisable if standard errors are also needed, and the two variants 
of FLS otherwise.

4 � Application: Okun’s law

This section includes an analysis based on real data. As is well known, Okun’s law 
links unemployment to the level of economic activity; in his original article (Okun 
1963), Okun noted that a 1% increase in unemployment is typically associated with 
a 2% change in the deviation of GDP from its potential.

We consider estimation of Okun’s law using US quarterly data from 1948:02 to 
2023:01 from the St. Louis Fed’s FRED database. We use the seasonally adjusted 
unemployment rate (UNRATE) and the output gap, calculated as the residual from 
the HP filter ( � = 1600 ) on the log of the constant-price GDP (GDPC1).

Figure 5 is very clear in this respect, since the time paths of the two variables 
are clearly opposite. However, it has been often suggested in the literature (see eg 
Knotek 2007), that Okun’s law may be unstable through time.5 In fact, after split-
ting the sample into three subperiods, with breakpoints at 1974:1 and 2000:1, Fig. 6 

Table 4   CPU time (sec)
T = 128 T = 256 T = 512

J = 2 KF 0.4216 1.0180 4.2650
KB 0.0021 0.0055 0.0175
KBA 0.1018 0.3816 1.7728
VC 0.6658 4.9813 26.056
FLS 0.0015 0.0024 0.0045
FLSN 0.0012 0.0022 0.0041

J = 4 KF 2.2921 9.0386 7.3593
KB 0.0028 0.0084 0.0284
KBA 0.1298 0.5256 2.4405
VC 4.4118 32.152 123.83
FLS 0.0014 0.0027 0.0061
FLSN 0.0013 0.0025 0.0054

J = 8 KF 29.814 124.88 157.59
KB 0.0060 0.0186 0.0734
KBA 0.2153 0.9062 6.1115
VC 80.680 578.91 3988.3
FLS 0.0020 0.0038 0.0074
FLSN 0.0018 0.0033 0.0066

5  Jalles (2019), in particular, estimated a time-varying response of unemployment to output for several 
countries, although his work is not directly comparable to ours in that only a static specification was 
considered.



1 3

Linear models with time‑varying parameters: a comparison

suggests that the long-run relationship between unemployment and output has 
become progressively steeper.

To investigate this possibility, we applied all the methods considered in Sect. 3. 
We begin by considering the simplest possible statistical model for Okun’s law, that 
is a static model of the form

where ut is unemployment and ỹt is the output gap; the time-invariant version reads

(11)ut = 𝛽1,t + 𝛽2,t ỹt + 𝜀t,

Fig. 5   Time plot of ogap and unrate 

Fig. 6   Scatterplot of ỹ (ogap) and ut (unrate), by period
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It is important to note that the model (12) suffers from considerable autocorrelation 
in the residuals: the DW statistic is around 0.12 and the p value for the LM autocor-
relation test with 8 lags is 3.73848e−133.

Application of the various methods for time-varying estimation yields the estimates 
of �2,t depicted in Fig. 7. In this case, the results are much less reassuring than those 
obtained with simulated data. Overall, the time-varying estimated coefficients float 
around stable values over the time span considered but are strongly erratic. We observe 
sizable discrepancies between all methods. Table  5 reports the sample correlation 
matrix for the time series in Fig. 7. If results had been homogeneous across methods, 
one would have expected correlations close to 1. Instead, most correlations appear very 
weak. The only exception are the two variants of FLS and the fixed-bandwidth version 
of KB.

(12)

�unrate = 5.72058
(0.078627)

− 0.614341
(0.047636)

ogap

T = 300 R̄2 = 0.3560 F(1, 298) = 166.32 𝜎̂ = 1.3618

(standard errors in parentheses)

Fig. 7   Estimated semielasticity for Okun’s Law—static model

Table 5   Correlation matrix

KF_2 KBA_2 KB_2 VC_2 FLS_2 FLSN_2

KF_2 1.0000 0.2125 0.3863 0.6594 0.5170 0.5253
KBA_2 0.2121 1.0000 − 0.0037 0.3430 − 0.0165 0.0138
KB_2 0.3863 − 0.0037 1.0000 0.3717 0.8547 0.8581
VC_2 0.6594 0.3430 0.3717 1.0000 0.4887 0.5726
FLS_2 0.5170 − 0.0165 0.8547 0.4887 1.0000 0.9840
FLSN_2 0.5253 0.0138 0.8581 0.5726 0.9840 1.0000
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It could be thought that the disappointing performance of the various estima-
tors considered (at least in terms of their ability to deliver a consistent picture) may 
depend on the gross misspecification inherent in the static formulation of model 
(12). For this reason, we now consider a dynamic equation so as to take into consid-
eration the time-series properties of the two variables, and accommodate short-run 
persistence accordingly.

Therefore, we set up a simple ECM model of the form

where we focus on the time-varying long run multiplier (LRM), which can be imme-
diately computed as

and is expected to be roughly − 0.5 according to the traditional version of Okun’s 
law. The time-invariant estimates of Eq. (13) are shown in Table 6; note that the esti-
mated value of the long-run multiplier is −1.67, much larger than expected.

Figure  10 shows the estimated time-varying coefficients for the model param-
eters.6 Again, we fail to find homogeneous results going from one estimator to 
another.

The most worrisome finding, however, concerns the estimated long-run multiplier: 
while for some of the estimators (KF, VC and FLS, see Fig. 8) the estimates are rel-
atively similar, and conform to the predictions from economic theory, other methods 
display very wide swings (see Fig. 9). The fact that KB and KBA produce estimates 
of �2,t and �3,t with non-coincident sign-switches induce implausible fluctuations, with 
apparently random sign changes of the long-run multiplier. This result is in line with 
the findings in Lucchetti and Valentini (2023) about the sensitivity of kernel-based esti-
mators to single data points.

(13)Δut = 𝛽1,t + 𝛽2,tut−1 + 𝛽3,t ỹt−1 + 𝛽4,tΔỹt + 𝛽4,tΔỹt−1 + 𝜂t.

(14)𝜅̂t = −
𝛽3,t

𝛽2,t
,

Table 6   Error-correction 
model—time constant 
coefficients

“LM test” is Godfrey’s autocorrelation test with 4 lags

Coefficient Std. Error p-value

�
1

0.303 0.109 0.006
�
2

− 0.054 0.018 0.004
�
3

− 0.089 0.020 0.000
�
4

− 0.519 0.025 0.000
�
5

− 0.079 0.025 0.002
R2 0.642

s2 0.415
LM test p-value 0.164

6  We do not report the time path of the constant term for reason of space. We limit to report that the rela-
tive estimated coefficients exhibit very low time variability, regardless of the estimation technique.
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The estimate of the long-run multiplier from kernel-based methods turns out to 
be numerically quite unstable in several cases between 1980 and 2010, as well as the 
FLSN in the first decade of 2000. All in all, it is worth noting that this behaviour is not 
ascribable to computational difficulties but is due to the fact that the estimated param-
eter �2,t approaches zero and therefore the LRM takes large values as shown in Fig. 10.

Finally, it is interesting to note that time-varying estimates of the model parame-
ters are not necessarily similar to time-constant ones, even on average. As a result, the 
LRMs markedly differ if we allow the parameters to adjust over time (whatever estima-
tion method is employed) and even small adjustments in the parameters estimates may 
result in large discrepancies in the estimation of the quantities of economic interest, 
such as the LRM.

Fig. 8   Estimated long-run multiplier. Methods: KF, VC, FLS

Fig. 9   Estimated long-run multiplier. Methods: KB, KBA, FLSN
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5 � Final remarks

We have compared several techniques for linear models with time-varying parameters 
in gretl: the candidates are the Kalman filter apparatus, moments and kernel-based 
methods and flexible least squares. We compared these estimators both via simulations 
and on real data. Although they perform similarly under controlled and regular sce-
narios, the behaviour on real data could be different and so the practitioner’s choice 
could be far from obvious. Apart from their statistical properties, we also show that in 
terms of CPU time these methods offer very different performance, where methods that 
do not employ numerical optimization, such as kernel-based methods and flexible least 
squares, outperform the alternatives.
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