The selection of the electric motor for the propulsion system in electric vehicles is a crucial step, as it determines the final performance of the vehicle. The design of the propulsion system of an electric vehicle, although similar in principle to that of a conventional endothermic engine, requires a change in vision. Indeed, the main problem in an electric vehicle is its range, which depends not only on the weight of the vehicle but also on the type of powertrain, type of transmission and engine, several factors that are difficult to assess at an early stage. In some cases, during the preliminary design phase of the propulsion system, one simply estimates the maximum power required by the vehicle, neglecting the calculation of the range. This evaluation is postponed to later stages, causing increased complexity and interaction during the propulsion system evaluation process. In this study, vehicle autonomy is taken into account from the outset with the aim to reduce this iteration. This paper proposes a preliminary electric motor selection method for land vehicles, highlighting the importance of smoothing the sampled data of driving cycles. A method for obtaining approximate efficiency maps of the electric motor is also illustrated, and it is shown how the total gear ratio affects vehicle energy consumption. Ultimately, this work makes a contribution to the design of more efficient and high-performance electric vehicles. This topic is more oriented to helping automotive manufactures choose in a fast and structured way electric motors for their vehicles.
A Proposal for a Simplified Systematic Procedure for the Selection of Electric Motors for Land Vehicles with an Emphasis on Fuel Economy / Bajrami, A; Palpacelli, Mc. - In: MACHINES. - ISSN 2075-1702. - ELETTRONICO. - 11:4(2023). [10.3390/machines11040420]
A Proposal for a Simplified Systematic Procedure for the Selection of Electric Motors for Land Vehicles with an Emphasis on Fuel Economy
Bajrami, A;Palpacelli, MC
2023-01-01
Abstract
The selection of the electric motor for the propulsion system in electric vehicles is a crucial step, as it determines the final performance of the vehicle. The design of the propulsion system of an electric vehicle, although similar in principle to that of a conventional endothermic engine, requires a change in vision. Indeed, the main problem in an electric vehicle is its range, which depends not only on the weight of the vehicle but also on the type of powertrain, type of transmission and engine, several factors that are difficult to assess at an early stage. In some cases, during the preliminary design phase of the propulsion system, one simply estimates the maximum power required by the vehicle, neglecting the calculation of the range. This evaluation is postponed to later stages, causing increased complexity and interaction during the propulsion system evaluation process. In this study, vehicle autonomy is taken into account from the outset with the aim to reduce this iteration. This paper proposes a preliminary electric motor selection method for land vehicles, highlighting the importance of smoothing the sampled data of driving cycles. A method for obtaining approximate efficiency maps of the electric motor is also illustrated, and it is shown how the total gear ratio affects vehicle energy consumption. Ultimately, this work makes a contribution to the design of more efficient and high-performance electric vehicles. This topic is more oriented to helping automotive manufactures choose in a fast and structured way electric motors for their vehicles.File | Dimensione | Formato | |
---|---|---|---|
machines-11-00420-v2.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.