Objectives. Acute myocardial ischemia in the setting of acute coronary syndrome (ACS) may lead to myocardial infarction. Therefore, timely decisions, already in the pre-hospital phase, are crucial to preserving cardiac function as much as possible. Serial electrocardiography, a comparison of the acute electrocardiogram with a previously recorded (reference) ECG of the same patient, aids in identifying ischemia-induced electrocardiographic changes by correcting for interindividual ECG variability. Recently, the combination of deep learning and serial electrocardiography provided promising results in detecting emerging cardiac diseases; thus, the aim of our current study is the application of our novel Advanced Repeated Structuring and Learning Procedure (AdvRS&LP), specifically designed for acute myocardial ischemia detection in the pre-hospital phase by using serial ECG features.Approach. Data belong to the SUBTRACT study, which includes 1425 ECG pairs, 194 (14%) ACS patients, and 1035 (73%) controls. Each ECG pair was characterized by 28 serial features that, with sex and age, constituted the inputs of the AdvRS&LP, an automatic constructive procedure for creating supervised neural networks (NN). We created 100 NNs to compensate for statistical fluctuations due to random data divisions of a limited dataset. We compared the performance of the obtained NNs to a logistic regression (LR) procedure and the Glasgow program (Uni-G) in terms of area-under-the-curve (AUC) of the receiver-operating-characteristic curve, sensitivity (SE), and specificity (SP).Main Results. NNs (median AUC = 83%, median SE = 77%, and median SP = 89%) presented a statistically (Pvalue lower than 0.05) higher testing performance than those presented by LR (median AUC = 80%, median SE = 67%, and median SP = 81%) and by the Uni-G algorithm (median SE = 72% and median SP = 82%).Significance. In conclusion, the positive results underscore the value of serial ECG comparison in ischemia detection, and NNs created by AdvRS&LP seem to be reliable tools in terms of generalization and clinical applicability.
Advanced repeated structuring and learning procedure to detect acute myocardial ischemia in serial 12-lead ECGs / Sbrollini, A.; Ter Haar, C. C.; Leoni, C.; Morettini, M.; Burattini, L.; Swenne, C. A.. - In: PHYSIOLOGICAL MEASUREMENT. - ISSN 1361-6579. - ELETTRONICO. - 44:8(2023). [10.1088/1361-6579/ace241]
Advanced repeated structuring and learning procedure to detect acute myocardial ischemia in serial 12-lead ECGs
Sbrollini A.;Leoni C.;Morettini M.;Burattini L.;
2023-01-01
Abstract
Objectives. Acute myocardial ischemia in the setting of acute coronary syndrome (ACS) may lead to myocardial infarction. Therefore, timely decisions, already in the pre-hospital phase, are crucial to preserving cardiac function as much as possible. Serial electrocardiography, a comparison of the acute electrocardiogram with a previously recorded (reference) ECG of the same patient, aids in identifying ischemia-induced electrocardiographic changes by correcting for interindividual ECG variability. Recently, the combination of deep learning and serial electrocardiography provided promising results in detecting emerging cardiac diseases; thus, the aim of our current study is the application of our novel Advanced Repeated Structuring and Learning Procedure (AdvRS&LP), specifically designed for acute myocardial ischemia detection in the pre-hospital phase by using serial ECG features.Approach. Data belong to the SUBTRACT study, which includes 1425 ECG pairs, 194 (14%) ACS patients, and 1035 (73%) controls. Each ECG pair was characterized by 28 serial features that, with sex and age, constituted the inputs of the AdvRS&LP, an automatic constructive procedure for creating supervised neural networks (NN). We created 100 NNs to compensate for statistical fluctuations due to random data divisions of a limited dataset. We compared the performance of the obtained NNs to a logistic regression (LR) procedure and the Glasgow program (Uni-G) in terms of area-under-the-curve (AUC) of the receiver-operating-characteristic curve, sensitivity (SE), and specificity (SP).Main Results. NNs (median AUC = 83%, median SE = 77%, and median SP = 89%) presented a statistically (Pvalue lower than 0.05) higher testing performance than those presented by LR (median AUC = 80%, median SE = 67%, and median SP = 81%) and by the Uni-G algorithm (median SE = 72% and median SP = 82%).Significance. In conclusion, the positive results underscore the value of serial ECG comparison in ischemia detection, and NNs created by AdvRS&LP seem to be reliable tools in terms of generalization and clinical applicability.File | Dimensione | Formato | |
---|---|---|---|
PMEA2023_RSLP4AMI_AS.pdf
accesso aperto
Descrizione: paper
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
739.21 kB
Formato
Adobe PDF
|
739.21 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.