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Abstract
Objectives. Acutemyocardial ischemia in the setting of acute coronary syndrome (ACS)may lead to
myocardial infarction. Therefore, timely decisions, already in the pre-hospital phase, are crucial to
preserving cardiac function asmuch as possible. Serial electrocardiography, a comparison of the
acute electrocardiogramwith a previously recorded (reference)ECGof the same patient, aids in
identifying ischemia-induced electrocardiographic changes by correcting for interindividual ECG
variability. Recently, the combination of deep learning and serial electrocardiography provided
promising results in detecting emerging cardiac diseases; thus, the aimof our current study is the
application of our novel Advanced Repeated Structuring and Learning Procedure (AdvRS&LP),
specifically designed for acutemyocardial ischemia detection in the pre-hospital phase by using
serial ECG features.Approach. Data belong to the SUBTRACT study, which includes 1425 ECGpairs,
194 (14%)ACSpatients, and 1035 (73%) controls. Each ECGpair was characterized by 28 serial
features that, with sex and age, constituted the inputs of the AdvRS&LP, an automatic constructive
procedure for creating supervised neural networks (NN).We created 100NNs to compensate for
statisticalfluctuations due to randomdata divisions of a limited dataset.We compared the
performance of the obtainedNNs to a logistic regression (LR) procedure and theGlasgowprogram
(Uni-G) in terms of area-under-the-curve (AUC) of the receiver-operating-characteristic curve,
sensitivity (SE), and specificity (SP).MainResults. NNs (medianAUC= 83%,median SE= 77%, and
median SP= 89%) presented a statistically (P value lower than 0.05) higher testing performance than
those presented by LR (medianAUC= 80%,median SE= 67%, andmedian SP= 81%) and by the
Uni-G algorithm (median SE= 72% andmedian SP= 82%). Significance. In conclusion, the positive
results underscore the value of serial ECG comparison in ischemia detection, andNNs created by
AdvRS&LP seem to be reliable tools in terms of generalization and clinical applicability.

1. Introduction

According to theWorldHealthOrganization, cardiovascular diseases (CVDs) are the leading cause of death
globally (Choudhary et al 2021,Ng 2016). An estimated 17.9million people died fromCVDs in 2019,
representing 32%of all global deaths (WHO 2021). Themost commonCVD is atherosclerosis: the formation of
cholesterol-rich plaqueswithin the inner arterial walls. Rupture, ulceration, fissure, or atherosclerotic plaque
erosion introduces thrombogenic factors into the bloodstream, resulting in intraluminal thrombus formation.
Partial or complete occlusion of the blood vessel by the thrombus causes acute ischemia and subsequent cell
death in the vascular bed distal from the occlusion site.When occurring in the coronary circulation, this scenario
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is called acute coronary syndrome (ACS) (Ibanez et al 2018, Collet et al 2021). Amyocardial infarction develops
within hours when the occlusion does not resolve spontaneously and there is no timely effective intervention
(such as percutaneous coronary intervention, coronary artery bypass grafting, antithrombotic orfibrinolytic
medication).Myocardial infarction is often detrimental to cardiac pump function andmay lead to heart failure
and to arrhythmias thatmay be lethal.Hence, fast and correct triage and immediate access to adequate therapy
are essential. E.g. transporting the patient to a proper intervention centermay occur in parallel with activating a
catheterization room, thus bypassing delays by the formal hospital admission or emergency roomprocedures
(Ibanez et al 2018, Collet et al 2021).

Other causes of ischemia, ACS, and possible subsequent infarction inwhich a condition other than coronary
plaque instability plays a role, are situations inwhich an imbalance betweenmyocardial oxygen supply and
demand occurs due to, e.g. hypotension, hypertension, tachyarrhythmias, bradyarrhythmias, anemia,
hypoxemia, coronary artery spasm, spontaneous coronary artery dissection, coronary embolism, and coronary
microvascular dysfunction (Thygesen 2018).

Usually, ischemia-related symptoms like chest discomfort trigger the ACS patient or those surrounding
them to call for emergencymedical assistance. However, chest discomfort or chest pain-equivalent symptoms
like dyspnea, epigastric pain, and pain in the left arm are not uniquely associatedwith ACS. The list of differential
diagnoses includes various cardiac, pulmonary, vascular, gastrointestinal, orthopedic, and psychological
conditions, of which several are reasons for hospital admission, and some (e.g. aorta dissection) are emergencies.
In practice, only a limited fraction (order ofmagnitude 10%) of the patients, who are urgently transported to a
hospital because of chest discomfort, are in the hospital diagnosed as ACS patients (Cotterill et al 2015,
Thygesen 2018, Al-Zaiti et al 2022, Tsao et al 2022).

Upon the arrival of themedical emergency services, an ECG is routinelymade, and its interpretation plays an
essential role in the triage decision regarding the treatment that the patient should receive.When the sensitivity
of the ECG interpretation for acute ischemia/ACS is too low, it leaves patients without adequate treatment;
when the specificity is too low, the low prevalence of ACS in the group of patients with chest discomfort causes
flooding of emergencymedical facilities, and patients are at risk of being subjected to unnecessary invasive
diagnostics or risk-bearing treatments. The traditional ECG criteria lack sensitivity for ACS (Al-Zaiti et al 2022).
Propermedical decision-making at this triage stage thus requires an effective ECGdiagnosis with sufficient
sensitivity without losing specificity (terHaar et al 2020a).

To diagnosemyocardial ischemia, clinical guidelines (O’Gara et al 2013, Ibanez et al 2018, Collet et al 2021)
recommend evaluating the ECGof the patient, interpreting its ECG features and, specifically, investigating signs
of ST elevation/depression at the J point. Considering that distributions of ECG features related tomyocardial
ischemia overlapwith normal values (Rijnbeek et al 2014) and present high intra-individual variability (due to
already existing heart disease and related ECG abnormalities like oldmyocardial infarctions, bundle branch
block or hypertrophy), the pre-hospital ECG is not easily interpretable. Serial electrocardiography, i.e.
comparing the acute ECG and a previously obtained non-acute ECGof the same patient, can help identify
within-subjectmodifications of ECG features (Sbrollini et al 2019) that can be useful to identifymyocardial
ischemia (terHaar 2020a, 2020b).

A combination of deep learning, i.e. a family ofmachine-learning algorithms that imitates human reasoning
by using advanced and highly non-linear statistical tools (Mathews 2019, Iman et al 2021), and serial
electrocardiography provided promising results. Specifically, neural networks (NNs) created by our Repeated
Structuring and Learning Procedure (RS&LP)were able to detect emerging cardiac diseases (Marinucci et al
2020, Sbrollini et al 2018, 2019, 2021, 2023). Thus, the present study aims to present the application of a novel
version of the RS&LP, Advanced Repeated Structuring and Learning Procedure (AdvRS&LP), specifically
designed for acutemyocardial ischemia detection in the pre-hospital phase using uniquely serial ECG features.

2.Methods

2.1.Database
Datawere collected during the SUBTRACT study (terHaar et al 2020a), jointly performed by the Amsterdam
Medical Center (AMC) and the LeidenUniversityMedical Center (LUMC), a retrospective observational study
that aimed to evaluate the diagnostic value of serial electrocardiography for the detection of acutemyocardial
ischemia in the pre-hospital phase.

The SUBTRACT study protocol was approved by themedical ethical committees (METCs) of the AMCand
the LUMCand by the boards of directors of other participatingmedical centers, based on the two academic
METCs’ approval (terHaar et al 2020a).

Eligible patients were found by searching the administrative databases of the emergencymedical services in
consecutive order for patients who needed urgent ambulance transport to one of the participating hospitals
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because of chest discomfort or chest pain-equivalent symptoms and inwhomat least one ambulance ECGof
sufficient technical quality had beenmade. Ambulance ECGswith poor signal quality, without a regular
supraventricular rhythmorwith atrialflutter, or that could not be processed by theUniversity of Glasgow (Uni-
G)ECGAnalysis Program (Macfarlane et al 2005), e.g. in case of suspected lead interchange, were not analyzed.
Whenmultiple analyzable ECGs of one ambulance ridewere available, the first ECGwas selected for further
analysis.

Then, we checked the administrative and ECGdatabases of all cooperating hospitals in the Leiden and
Amsterdam regions for a previous ECG recording of the same patient that had electively beenmade (hence, not
in an acute state).

Patients were excludedwhen no earlier elective ECG could be found and in case of insufficient information,
e.g. due to death before a reliable diagnosis could be established. Patients with amajor cardiac event, e.g. open-
heart surgery ormyocardial infarction, between the time instants at which the reference and ambulance ECGs
were recorded, were also excluded. Finally, if a patient hadmultiple ambulance visits by the emergencymedical
services during the study period, only data regarding themost recent visit were included.

A total of 1425 patients were included (736males and 689 females; 67± 14 years). See terHaar et al (2020a)
for the clinical characteristics of these patients (terHaar et al 2020a). For each patient, two 10-s 12-lead ECGs
were available for analysis, one ambulance ECG (AECG)made in the acute situation and one electivelymade
prior ECG that functions as a reference ECG (RECG). TheAECGwas recordedwith LIFEPAK12 (Physio-
Control) using theMason-Likar electrode configuration (Mason and Likar 1966). TheRECGswere, depending
on the hospital inwhich theyweremade, recorded by various electrocardiographs (GE, Schiller,Mortara,
Siemens/Dräger)using the standard electrode configuration of the diagnostic resting ECG.

For each patient, the presence or absence ofmyocardial ischemia at themoment of theAECG recordingwas
assessed by evaluating all available clinical data (i.e. laboratory values and clinical diagnosis) obtained from the
medical records of the hospital intowhich the patient was admitted after the ambulance ride (terHaar et al
2020a). As a result of this assessment, eachAECGwas assigned to one offive categories, namely presumably
ischemic, probably ischemic, uncertain, probably non-ischemic, and presumably non-ischemic. In the current
study, patients classified as presumably or probably ischemic were considered cases, while patients classified as
presumably or probably non-ischemic were considered controls. Patients classified as uncertainwere excluded
from the analysis. The resulting study group comprised 194 (14%) cases and 1035 (73%) controls. Table 1 gives a
breakdownof the ischemia categories, numbers of patients, and case-control assignments in the study group.

2.2. ECGanalysis and feature extraction
AECGsweremathematically converted to complywith the standard 12-lead electrode configuration (Man et al
2008). Then, theAECGs and the RECGswere processed by the LEADS program (Draisma et al 2005). Briefly,
LEADS first converts the standard 12-lead ECG into a vectorcardiogramusing theKorsmatrix (Draisma et al
2005). Then, LEADS detects the heartbeats in the recording, computes the averaged predominant beat, and
automatically identifies itsQRS-complex onset, J-point, andT-wave offset. These landmarks in timewere
visually inspected and, if necessary,manually corrected by two independent clinicians. Finally, each ECGpair
was characterized by the 28 serial features, listed in table 2. Figure 1 gives an example of serial feature extraction.

2.3. Advanced repeated structuring and learning procedure
TheAdvRS&LP is an improved version of the RS&LP (Sbrollini et al 2019, 2021). The procedure requires that
the database is divided into a learning dataset (in our current study, 70%of the entire database; 141 cases and 720
controls) and a testing dataset (in our current study, 30%of the entire database; 53 cases and 315 controls).
Moreover, the learning dataset has to be further divided into a training dataset (in our current study, 80%of the
learning dataset; 113 cases and 576 controls) and a validation dataset (in our current study, 20%of the learning

Table 1. Ischemia categories, numbers of patients, and case-control
assignments in the study group.

Ischemia category

Number (%) of
patients Cases/controls

Presumably ischemic 166 (12%) Cases

Probably ischemic 28 (2%) Cases

Uncertain 196 (13%) Excluded

Probably non-ischemic 66 (5%) Controls

Presumably non-ischemic 969 (68%) Controls

1425 (100%)
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dataset; 28 cases and 144 controls). Finally, the procedure requires that the case-control prevalence ratio is
maintained in all datasets.

AdvRS&LP creates supervised deep learningNNswith the number of inputs (IN) equal to the number of
features (in this study, IN equals 30, namely the 28 serial features plus sex and age), and the number of outputs
(OUT) equal to the number of classes (in this study,OUT equals 2, namely the case and control classes). Panel A
offigure 2 shows a block scheme of the AdvRS&LP. It is an iterative procedure that facilitates a gradual structural
and performance improvement of aNN (initially composed of one neuron in one hidden layer) during learning.

Specifically, during each structuring cycle, the actualNN is extended by adding additional (AD)neurons in
an existing hidden layer or by creating an additional hidden layer consisting of ADneurons, which number is
initially equal to the number of inputs. Only ADneurons are initialized by randomweights and biases (ranging
between−1 and+1 and characterized by a sigmoid activation function), while theweights and biases of the
neurons composing the actualNN remain unchanged. The initialization is considered suitable only if the
performance of the initializedNN is better than that of the actualNN after one single epoch; otherwise, the
current initialization of theADneurons is rejected. InitializedNNs are trained by the scaled-conjugate-gradients
algorithm (Møller 1993), and the early stopping criterion prevents overfitting (Prechelt 2012).Moreover, we
considered the inverse of class prevalence as input to compensate for class disproportionality (King and
Zeng 2003). The performance of all trainedNNs is comparedwith the performance of the actualNN, and the
NNwith the lowest validation error is considered the best. If the bestNN is not equivalent to the actualNN, the
bestNN is promoted as the actualNN, and the procedure starts anew (example infigure 2, panel B). Otherwise,
if the bestNN corresponds to the actualNN, the actualNN ismaintained unchanged, the number of AD
neurons decreases with one neuron, and the procedure starts anew considering themodified number of AD
neurons (example infigure 2, panel C). The procedure stops if none of the structures is suitable after
initialization (example infigure 2, panel D) or if the number of ADneurons is equal to zero (example infigure 2,
panel E).

TheAdvRS&LPwas repeated 100 times to prevent overfitting, constructing 100finalNNs. TheNNwith the
highest area under the curve (AUC) of the receiver operating characteristic (ROC) in the learning dataset was

Table 2. Serial features computed from each reference ECG (RECG)—ambulance ECG (AECG) pair.

Acronym (unit) Description

1 QRSD (ms) The difference between theQRSdurations of the AECG andRECG

2 QRSaD (ms) The absolute value of the difference between theQRS durations of the AECG andRECG

3 MQRSD (μV) The difference between themagnitudes of themaximalQRS vectors of the AECG andRECG

4 MQRSaD (μV) The absolute value of the difference between themagnitudes of themaximalQRS vectors of the AECG

andRECG

5 IQRSD (mV·ms) The difference between themagnitudes of theQRS-integral vectors of the AECG andRECG

6 IQRSaD (mV·ms) The absolute value of the difference between themagnitudes of theQRS-integral vectors of the AECG

andRECG

7 QRSCD (%) The difference between theQRS complexities of the AECG andRECG

8 QRSCaD (%) The absolute value of the differences between theQRS complexities of the AECG andRECG

9 JD (μV) The absolute value of the difference between themagnitudes of the J-point vectors of the AECGandRECG

10 SDJ8 (μV) The summed absolute values of the relative J-point shifts considering the 8 independent leads

11 SDJ12 (μV) The summed absolute values of the relative J-point shifts considering the 12 standard leads

12 MTD (μV) The difference between themagnitudes of themaximal T vectors of the AECG andRECG

13 MTaD (μV) The absolute value of the difference between themagnitudes of themaximal T vectors of the AECG andRECG

14 ITD (mV·ms) The difference between themagnitudes of the T-integral vectors of the AECG andRECG

15 ITaD (mV·ms) The absolute value of the difference between themagnitudes of the T-integral vectors of the AECG andRECG

16 TCD (%) The difference between the T-wave complexities of the AECG andRECG

17 TCaD (%) The absolute value of the difference between the T-wave complexities of the AECG andRECG

18 TSD (%) The difference between the T-wave symmetries of the AECGand the RECG

19 TSaD (%) The absolute value of the difference betweenT-wave symmetries of the AECGandRECG

20 NPTD (adi) The difference between the number of leads with positive Twaves in the AECGandRECG

21 NTPC (adi) The number of leads that present a T-wave polarity change betweenAECG andRECG

22 QTD (ms) The difference between theQT intervals of the AECG andRECG

23 QTaD (ms) The absolute value of the difference between theQT intervals of the AECG andRECG

24 VGD (μV) The difference between themagnitudes of the ventricular gradients of the AECG andRECG

25 SAD (°) The difference between theQRS-T spatial angles of the AECG andRECG

26 SAaD (°) The absolute value of the difference between theQRS-T spatial angles of the AECG andRECG

27 HRD (bpm) The difference between the heart rates of the AECG andRECG

28 HRaD (bpm) The absolute value of the difference between the heart rates of the AECG andRECG.
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considered the optimalNN.We created 100NNs to compensate for statistical fluctuations due to randomdata
divisions of a limited dataset.

2.4. Statistical analysis
All computations were performed inMatlab (Mathworks, version R2022b) and inRStudio (RStudio, version
2021.09.2).

Univariate AUCand its 95% confidence intervals (95%CI) of the ROCof each serial featurewere computed,
considering the entire database and the learning and testing datasets. The serial feature that provided the highest
learning univariate AUCwas considered the best serial feature.

The performance of theNNswas assessed by computing the ROCof both learning and testing datasets and,
accordingly, the AUCand 95%CI. Finally, the value of sensitivity (SE) and the value of specificity (SP)were
selected on theROC.NNs performancewas comparedwith the results obtainedwith the logistic regression
procedure (LR) used by terHaar et al (2020a) andwith case/control classification obtained by theUni-G
algorithm (Macfarlane et al 2005).

Distributions of AUCobtained from theNNswere comparedwith those obtained by LR. Finally, SE and SP
distributions obtainedwith theNNswere compared to those obtained by LR and by theUni-G algorithm.
Distributions are reported as 50th [25th; 75th] percentiles and statistical comparisons were performed by the
Wilcoxon rank-sum test. The statistical significance (P value)was 0.05.

3. Results

Table 3 reports the AUCand 95%confidence intervals of the univariate serial feature classification in the entire
database and theAUCdistributions of the univariate serial feature classifications in 100 learning and testing
dataset realizations. Feature SDJ12 provided the highest univariate AUC in the entire database (83%) and also in
both the learning (82%) and testing datasets (84%).

Figure 1.Two 12-lead ECGs of the same patient, in this examplewithout (panel A) andwith (panel B) ischemia, to illustrate serial ECG
feature extraction (modified from terHaar et al 2013). This patient has left-ventricular hypertrophy; hence, the non-ischemic ECGof
this patient (panel A) is abnormal. One of the consequences of this abnormality is thatmost J-point amplitudes in panel A are non-
zero. For instance, the J point in leadV2,marked by the red arrow, has a positive amplitude (elevation). Ischemia changes nearly all
J-point amplitudes (compare panels A andB). E.g. the positive J-point amplitude (elevation) in leadV2 in panel A becomes negative
(depression) during ischemia (panel B, alsomarked by a red arrow). Comparable J-point amplitude changes are seen inmultiple other
leads (II, III, aVF, V3, andV4). Our current study uses only serial ECG features: the inputs of the neural networks are differences
between the two ECGs rather than directmeasurements in both ECGs.Hence, for example, the J point in leadV2 contributes by its
amplitude change only rather than by its elevation or depression. Adapted from terHaar et al 2013, Copyright (2013), with permission
fromElsevier.
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Table 4 summarizes the performances of theNNs, the LR, and theUni-G algorithm. Figure 3 depicts the
ROC curves of theNNs (panel A) and the LR (panel B) for testing datasets. Red dots represent the SE and SP of
theUni-G algorithm;median SE andmedian SP are represented by green squares. NN architectures are variable:
the least complex architecture presents 47 neurons in one hidden layer, and themost complex architecture
shows four hidden layers with 61 neurons in thefirst layer, 28 neurons in the second layer, 113 neurons in the
third layer, and 33 neurons in the fourth layer. NNs performed statistically better than LR in both learning (NNs:
medianAUC= 90%; LR:medianAUC= 87%;P value< 0.05) and testing (NNs:median AUC= 83%; LR:
medianAUC= 80%;P value< 0.05) as reported in table 4. TheNNs (learning:median SE= 91%andmedian
SP= 91%; testing: SE= 77%and SP= 89%) also had a significantly better performance than LR (learning:
median SE= 67%andmedian SP= 81%; testing:median SE= 67%andmedian SP= 81%) andUni-G
algorithm (learning:median SE= 65%andmedian SP= 80%; testing:median SE= 72%andmedian
SP= 82%) in terms of SE and SP in both the learning and testing datasets (table 4).

4.Discussion

In patients presentingwith chest pain, reliable ECG-based detection of acutemyocardial ischemia atfirst
medical contact is crucial for the correct triage, which is essential for optimal preservation of cardiac function.
This paper presents the AdvancedRepeated Stucturing and Learning Procedure (an improved version of the
Repeated Stucturing and Learning Procedure—Sbrollini et al 2019, 2021) as a deep learningmethod able to
handle the detection of acutemyocardial ischemia in ambulance ECGs by serial comparisonwith a previous
non-ischemic reference ECGof the same patient.

For this study, we used the data collected during themulticenter SUBTRACT study (terHaar et al 2020a).
These data are rare and valuable because of the following reasons:

Figure 2.Block scheme of theAdvanced Repeated Structuring and Learning Procedure (AdvRSLP; panel A) and graphical
representation of characteristic examples. Panel B represents the promotion of the best neural network (NN) into a new actual NN.
Panel C represents the decrement in the number of added (AD)neurons. Panel D represents the stopping criterium according to a
failed initialization success. Panel E represents the stopping criterium according to the number of ADneurons equal to zero.
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• These data could only be collected because of the joint participation of ambulance services, academic and
non-academic hospitals in the Leiden andAmsterdam regions, who granted access to their administrative,
clinical, and ECGdatabases.

• For each patient, the database contains an acute ambulance ECG aswell as a previously electively recorded
ECGmade under non-ischemic conditions, often found in another hospital than the facility towhich the
patient was acutely admitted after the ambulance ride.

Table 3.The area under the curve (AUC) and 95% confidence intervals of the
univariate serial feature classification in the database andAUCdistributions
(50th [25th; 75th] percentiles) of the univariate serial feature classifications in
100 learning and testing dataset realizations.

Entire

database

Learning

datasets

Testing

datasets

Cases/controls 194/1035 141/720 53/315

1 QRSD (ms) 61 [57; 66] 61 [56; 66] 63 [58; 68]
2 QRSaD (ms) 50 [46; 54] 47 [42; 52] 57 [52; 62]
3 MQRSD (μV) 47 [43; 52] 48 [43; 53] 45 [40; 50]
4 MQRSaD

(μV)
55 [51; 60] 55 [50; 60] 56 [51; 62]

5 IQRSD

(mV·ms)
56 [52; 61] 58 [53; 64] 51 [46; 57]

6 IQRSaD

(mV·ms)
57 [53; 62] 56 [51; 61] 60 [55; 65]

7 QRSCD (%) 62 [58; 67] 62 [57; 68] 62 [57; 68]
8 QRSCaD (%) 62 [57; 66] 61 [55; 66] 65 [59; 70]
9 JD (μV) 80 [76;84] 79 [74; 84] 81 [76; 85]
10 SDJ8 (μV) 82 [78; 86] 81 [76; 85] 85 [81; 89]
11 SDJ12 (μV) 83 [79; 86] 82 [78; 87] 84 [80; 88]
12 MTD (μV) 59 [55; 64] 60 [54; 65] 59 [54; 65]
13 MTaD (μV) 62 [57; 66] 61 [55; 66] 63 [58;69]
14 ITD (mV·ms) 58 [53; 63] 56 [51; 62] 62 [57; 68]
15 ITaD

(mV·ms)
59 [55; 64] 59 [54; 65] 59 [54; 65]

16 TCD (%) 53 [43; 51] 49 [44; 54] 43 [38; 49]
17 TCaD (%) 55 [51; 60] 55 [49; 60] 56 [50; 61]
18 TSD (%) 46 [41; 50] 44 [39; 49] 50 [45; 55]
19 TSaD (%) 58 [53;62] 58 [53; 64] 56 [51; 62]
20 NPTD (adi) 43 [39; 48] 43 [38; 48] 44 [39; 49]
21 NTPC (adi) 62 [57; 66] 62 [56; 67] 62 [57; 68]
22 QTD (ms) 45 [41; 50] 45 [40; 50] 46 [41; 51]
23 QTaD (ms) 57 [52; 61] 56 [51; 62] 57 [52; 63]
24 VGD (μV) 64 [60; 69] 66 [60; 71] 62 [56; 67]
25 SAD (°) 53 [49; 58] 52 [47; 58] 55 [50; 61]
26 SAaD (°) 60 [56; 65] 61 [56; 67] 58 [52; 63]
27 HRD (bpm) 55 [50; 59] 56 [50; 61] 54 [48; 59]
28 HRaD (bpm) 56 [51; 60] 56 [51; 61] 56 [50; 61]

Table 4.Performance of the neural networks (NN), the logistic regression (LR), and theUni-G algorithm. The areas under the curve (AUC)
are reported asmedian and 95% confidence intervals (95%CI). Distributions of sensitivity (SE) and specificity (SP) are reported as 50th
[25th; 75th] percentiles.

NN LR Uni-G

Learning dataset AUC [95%CI] (%) 90a [88; 91] 87 [86; 87] —

SE (%) 91a,b [84; 93] 67 [66; 68] 65 [64; 68]
SP (%) 91a,b [88; 92] 81 [66; 68] 80 [79; 81]

Testing dataset AUC [95%CI] (%) 83a [82; 85] 80 [78; 82] —

SE (%) 77a,b [73; 84] 67 [64; 69] 72 [65; 74]
SP (%) 89a,b [88; 90] 81 [80; 82] 82 [80; 83]

a P value<0.05when comparing the distributions ofNNswith those obtained by LR.
b P value<0.05when comparing the distributions ofNNswith those obtained by theUni-G algorithm.
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• For each patient, detailed and complete clinical information is available about the hospital admission period
following ambulance transportation. Based on thesefindings, a nuanced categorization of patients could be
made as either a case patient (presumably or probably ischemic during the ambulance ECG recording), a
control patient (presumably or probably non-ischemic during the ambulance ECG recording), or undecided
(lack of arguments to decide whether ischemiawas present during the exactmoment of the recording of the
ambulance ECGor not).

• The collected data are representative of the patientmix that is contacting the EMSbecause of chest pain and in
whomACShas to be ruled in or ruled outwithout anyfiltering by specific ECG criteria (e.g. STEMI criteria)
for the case patients andwith overwhelminglymore control patients, partly healthy, partly with various
pathologies, sometimes even interfering with their ECG.

InACS, the ECG can dynamically changewith time, which could contribute to the diagnosis; thus, ECG
monitoringwould be helpful in this respect. However, current clinical practice is tomake 10 s ECGs, which is
sufficient to catch the situation of themoment. Sometimes,multiple 10-s ECGs aremade during one ambulance
ride. In combinationwith the symptoms during these ECG recordings, we could have attempted to select the
presumablymost diagnostic ECG.However, no detailed information about the patient’s symptoms during the
ECG recordings was available in our retrospective observational study.Hence, in patients withmore than a
single ambulance ECG,we decided to analyze thefirst one, assuming that this ECG is themost decisive in the
triage process and the decision towhich healthcare facility the patient has to be transported.

The cardinalities of the classes (cases and controls) are strongly unbalanced.Machine learning algorithms,
such asNNs and LR, usually get the inverse of class prevalence as additional input to compensate for this
disproportionality (King andZeng 2003). This is current practice in healthcare applications, where the numbers
of cases are often less than the number of controls. In our present study, we have applied the same strategy, but in
future projects, we aim to create a procedure independent of cardinality imbalance.

To facilitate the clinical interpretability of the results, our procedure used serial ECG features that were
selected because they have specific physiological or pathophysiological evidence.Moreover, serial features were
chosen considering the recent outcomes of serial ECG analysis with LR (terHaar et al 2020a), which revealed its
usefulness for the detection of acute cardiac ischemia. The best serial feature is SDJ12, the sumof the absolute
values of the AECGversus RECG J-amplitude displacements in all 12 leads. Indeed, this feature is in accordance
with the clinical guidelines (O’Gara et al 2013, Levine et al 2016, Ibanez et al 2018). However, considering the
results of the comparison between ourNNand the best serial feature, electrocardiographicmyocardial ischemia
detection cannot be performed by using only J-point features.

Our newmethod is an advanced version of the RS&LP, an algorithm forNNconstruction (Marinucci et al
2020, Sbrollini et al 2018, 2019, 2021, 2023). Initially, themethod added one neuron for each epoch, limiting the
NNconstruction procedure. First of all, adding one neuron at each epoch substantially increases the
computational time of the learning phase, whichmay take days to create a singleNN (Sbrollini et al 2023).

Figure 3.Receiver operating characteristics (ROC) of neural network (NN, panel A) and logistic regression (LR, panel B)ROCs of the
100 realizations. Red dots and green squares represent the values and themedian value of sensitivity and specificity provided by the
Uni-G algorithmof the 100 realizations, respectively.
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Moreover, adding one neuron at a timemay limit the training performance. Indeed, let us consider the
hyperplane of solutions (with the principal components as inputs). The training proceduremay guide theNN
towards a localminimum in case of an insufficient number of epochs or an insufficient number of neurons in an
insufficient number of layers. Considering that the early-stopping validation criterion is efficient in the
evaluation of the number of epochs, an ideal constructive algorithmmust explore asmanyNNarchitectures as
possible to reach the globalminimum in the hyperplane of solutions. For these reasons, AdvRS&LP presents a
variable number of added neurons that varies with theNN learning performance: initially, the number of added
neurons after each learning-and-validation cycle equals the number of features to span the entire hyperplane of
solutions, while it decreases when the performance of theNNapproaching stability. At the end of the procedure,
afinal lownumber of added neurons refines theNNperformance.

The secondmain difference between the AdvRS&LP and the original RS&LP is the decision to remove some
structural rules. Originally, the RS&LP createdNN that should have a pyramidal structure (the number of
neurons in a given layermust be equal to or lower than the number of neurons in the previous layer), and the
number of layers should be lower than four. Differently, AdvRS&LP promotes the growth of each layer
independently from the others and does not limit the number of layers to three. Despite the high freedom in
structuring, the AdvRS&LP is limited during the initialization of newly added neurons by early-stopping
validation criterion and by selecting the bestNN according to the validation error to prevent generalization loss.
Our results confirmed the utility of the generalization rules applied toAdvRS&LP. Indeed, the learning
performance is not very high (medianAUCon the learning dataset close to 90%) due to these rules, but it
guarantees the generalization of theNN (medianAUCon the testing dataset of 83%).

Comparedwith LR andwith theUni-G algorithm (table 4), theNNs created by the AdvRS&LP yielded the
best performance: they provided statistically significantly higher AUC, SE, and SP values in both the learning and
testing datasets. The results ofNNs andUni-G algorithmwere computed on the same data divisions, while the
results of LRwere computed on different randomdata divisions (of the same database, however) because the
randomdata divisions used in the study by terHaar et al (2020a) could not be replicated. However, considering
the high number of data divisions (100 realizations), the comparison is statistically reliable.

TheUni-G algorithm yielded amedian SE of 72% and amedian SP of 82%. Thiswas the result of the analysis
of the ambulance ECGs alone. It is a result that is expected not to differ toomuch from that of an experienced
cardiologist (Willems et al 1991). Our current study, combining deep learning and serial ECG analysis, yields an
SE of 77% and an SP of 89%: a statistically better performance, particularly better SE. Likely, this improvement is
partly because of the artificial intelligence-based approach of our currentmethod and partly because of the serial
comparisonwith the reference ECG.Having statistically better results in the testing dataset confirms the
superiority of theNNcreated byAdvRS&LP in terms of generalization and clinical applicability.

This study aimed to diagnose ischemia by analyzing differences between the non-ischemic reference ECG
and the ambulance ECGof EMSpatients only. The positive results underscore the value of serial comparison of
ECG in ischemia detection.Of note, we have not used the direct features of the ambulance ECG that are
normally used in thefirst place to detect ischemia. In the following studies, wewill add this information to obtain
themaximal possible performance of the current AdvRS&LP algorithmon the basis of an acute ambulance ECG
and a historical reference ECG.

Limitations of the clinical application of thismethod in the real clinical scenario have to be found in the
availability of a previous ECGof the same patient that can be used as a reference.We expect that new services,
such as a unique accessible cloud storage service for ECG recordings of a region, will facilitate the fast
accessibility of the data, the identification of a reference ECGof the patient, and the possibility of using ourNN
in real-life clinical scenarios.

Data availability statement

The data cannot bemade publicly available upon publication due to legal restrictions preventing unrestricted
public distribution. The data that support the findings of this study are available upon reasonable request from
the authors.
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The SUBTRACT study protocol was approved by themedical-ethical committees (MECs) of theAMC (date of
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