Protein interactions are investigated under different conditions of lysozyme concentration, temperature and ionic strength by means of in-solution small angle X-Ray scattering (SAXS) experiments and Monte Carlo (MC) simulations. Initially, experimental data were analysed through a Hard-Sphere Double Yukawa (HSDY) model combined with Random Phase Approximation (RPA), a closure relationship commonly used in the literature for monodisperse systems. We realized by means of MC that the HSDY/RPA modelling fails to describe the protein-protein pair potential for moderated and dense systems at low ionic strength, mainly due to inherent distortions of the RPA approximation. Our SAXS/MC results thus show that lysozyme concentrations between 2 (diluted) and 20 mg/mL (not crowded) present similar protein-protein pair potential preserving the values of surface net charge around 7 e, protein diameter of 28 Å, decay range of attractive well potential of 3 Å and a depth of the well potential varying from 1 to 5 kBT depending on temperature and salt addition. Noteworthy, we here propose a novel method to analyse the SAXS data from interacting proteins through MC simulations, which overcomes the deficiencies presented by the use of a closure relationship. Furthermore, this new methodology of combining SAXS with MC simulations gives a step forward to investigate more complex systems as those composed of a mixture of proteins of distinct species presenting different molecular weights (and hence sizes) and surface net charges at low, moderate and very dense systems.

Unveiling protein-protein interaction potential through Monte Carlo simulation combined with small-angle X-ray scattering / Tanouye, F. T.; Alves, J. R.; Spinozzi, F.; Itri, R.. - In: INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES. - ISSN 0141-8130. - STAMPA. - 248:(2023). [10.1016/j.ijbiomac.2023.125869]

Unveiling protein-protein interaction potential through Monte Carlo simulation combined with small-angle X-ray scattering

Spinozzi F.;Itri R.
2023-01-01

Abstract

Protein interactions are investigated under different conditions of lysozyme concentration, temperature and ionic strength by means of in-solution small angle X-Ray scattering (SAXS) experiments and Monte Carlo (MC) simulations. Initially, experimental data were analysed through a Hard-Sphere Double Yukawa (HSDY) model combined with Random Phase Approximation (RPA), a closure relationship commonly used in the literature for monodisperse systems. We realized by means of MC that the HSDY/RPA modelling fails to describe the protein-protein pair potential for moderated and dense systems at low ionic strength, mainly due to inherent distortions of the RPA approximation. Our SAXS/MC results thus show that lysozyme concentrations between 2 (diluted) and 20 mg/mL (not crowded) present similar protein-protein pair potential preserving the values of surface net charge around 7 e, protein diameter of 28 Å, decay range of attractive well potential of 3 Å and a depth of the well potential varying from 1 to 5 kBT depending on temperature and salt addition. Noteworthy, we here propose a novel method to analyse the SAXS data from interacting proteins through MC simulations, which overcomes the deficiencies presented by the use of a closure relationship. Furthermore, this new methodology of combining SAXS with MC simulations gives a step forward to investigate more complex systems as those composed of a mixture of proteins of distinct species presenting different molecular weights (and hence sizes) and surface net charges at low, moderate and very dense systems.
File in questo prodotto:
File Dimensione Formato  
tanouye2023_full.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 8.18 MB
Formato Adobe PDF
8.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
accepted_with_SI.pdf

Open Access dal 19/07/2024

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Creative commons
Dimensione 3.73 MB
Formato Adobe PDF
3.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/321112
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact