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Abstract 

Protein interactions are investigated under different conditions of lysozyme concentration, temperature and 

ionic strength by means of in-solution small angle X-Ray scattering (SAXS) experiments and Monte Carlo 

(MC) simulations. Initially, experimental data were analysed through a Hard-Sphere Double Yukawa (HSDY) 

model combined with Random Phase Approximation (RPA), a closure relationship commonly used in the 

literature for monodisperse systems. We realized by means of MC that the HSDY/RPA modelling fails to 

describe the protein-protein pair potential for moderated and dense systems at low ionic strength, mainly due 

to inherent distortions of the RPA approximation. Our SAXS/MC results thus show that lysozyme 

concentrations between 2 (diluted) and 20 mg/mL (not crowded) present similar protein-protein pair potential 

preserving the values of surface net charge around 7e, protein diameter of 28 Å, decay range of attractive well 

potential of 3 A and a depth of the well potential varying from 1 to 5 𝑘𝐵𝑇 depending on temperature and salt 

addition. Noteworthy, we here propose a novel method to analyse the in-solution SAXS data from interacting 

proteins through MC simulations, which overcomes the deficiencies presented by the use of a closure 

relationship. Furthermore, this new methodology of combining SAXS with MC simulations gives a step 

forward to investigate more complex systems as those composed of a mixture of proteins of distinct species 

presenting different molecular weights (and hence sizes) and surface net charges at low, moderate and very 

dense systems. 

Introduction 

It is well known that proteins are usually localized in highly populated environments. For 

instance, the blood plasma, cytoplasm and eye’s lens contain tens to a few hundred mg/ml 

of proteins [1,2,3], thus imposing a very short average distance between the 

macromolecules. As a consequence, proteins are strongly affected by protein-protein 

interaction networks. Different forces such as electrostatic, excluded volume, van der 

Waals, depletion, among others [4,5], give rise to a resulting attractive or repulsive mean 

interaction potential between the macromolecules. Therefore, understanding the sources of 

the interaction potentials is of fundamental importance to describe and/or predict how 

proteins may be distributed in the fluid medium. The potentials are generally classified into 

short or long range, acting from a few to hundreds of Å, respectively. Thus, the balance 

between all these repulsive and attractive forces dictates whether the proteins will stay apart 

from each other, form amorphous aggregates (as in neurodegenerative diseases) [6], make 

functional contacts [7], crystallize [8,9,10] or even undergo a liquid-liquid phase 
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separation [11,12,13]. This balance, in turn, can be affected by numerous physical-chemical 

conditions, such as temperature, pressure, protein concentration (crowding effect), pH and 

ion composition [14,15,16,12]. 

Despite the importance of studying interactions between proteins, unraveling interaction 

potentials is not a simple task. Some experimental techniques are able to determine some 

important parameters in diluted, spherically symmetric and monodisperse protein systems, 

such as protein size and surface charge using electrophoretic mobility/zeta potential and 

small angle scattering (SAS). However, only static and dynamic light scattering through the 

second virial coefficient [14,16] and SAS appear as adequate tools to describe interaction 

between proteins for denser systems [15,17,18,19]. Indeed, SAS is a very useful technique 

to obtain the pair potential function 𝑈(𝑟) of proteins. This is possible because the spatial 

organization of proteins in solution can be experimentally accessed through the structure 

factor𝑆(𝑞) [20,21], which in turn can be theoretically related to the underlying interaction 

potential. The standard way of relating 𝑈(𝑟) to 𝑆(𝑞) is through the mediation of a closure 

relation, which is a necessary approximation for solving the Ornstein-Zernicke (OZ) 

equation. Among these closure relations, the most used in the literature are: Percus-Yevick 

(PY) [22,12], Hyper-Netted Chain (HNC) [11,17], Mean Spherical Approximation 

(MSA) [23,24,25,18,26,27,28] and Random Phase Approximation (RPA) [19,29,30,15]. 

Thus, the combination of an interaction model with a closure relation makes it possible to 

adjust the X-ray scattering data and, consequently, the physical parameters that characterize 

the interaction. This approach has been extensively applied to the study of monodisperse 

systems. However, just few works were done trying to interpret scattering curves of 

different proteins species (as monomers and dimers with distinct sizes and surface charges, 

for instance [31]). 

Regarding the interaction model, there are several approaches used in the SAXS literature. 

The most common consider proteins as hard-spheres immersed in a homogeneous medium, 

characterized by a given dielectric constant, in analogy with a vacuum gas model [32,33]. If 

the proteins are charged, a screened Coulomb potential is usually included in the 

model [23,24,18], following the well-known Derjaguin-Landau-Verwey-Overbeek (DLVO) 

theory [34,35,14]. The screened Coulomb potential has a Yukawa-type shape, being 

proportional to 𝑒−𝛼𝑟/𝑟, and is repulsive for particles of the same charge sign. Furthermore, 

many models of protein-protein interaction also include attractive contributions, which may 

have different sources: van der Waals forces, dipole-dipole interactions [36], charge 

regulation [37], among others. However, it is customary to represent the sum of all these 

contributions in a single potential with a simpler format to be analyzed. Thus, we can find 

attractive terms in the shape of a square-well , a Yukawa-type function  or simply a 

function proportional to 𝑟−6 [38] etc. In the case where the total interaction is given by a 

screened Coulomb repulsion plus a Yukawa-type attractive potential (besides the excluded 

volume interaction), we refer to as Hard-Sphere Double-Yukawa (HSDY) model 
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throughout the paper. Such a model, initially proposed by Tardieu et al. [17], has been 

widely used in the last two decades, along with some closure relations, to model the 

interactions of several proteins [17,19,25,29,30,15,26,27,28]. 

Although the closure relations are commonly used to analyse the protein SAS data through 

model fittings, distortions can be caused in the resulting potentials, especially for samples 

with high protein concentration. Nevertheless, there are few works in the literature 

dedicated to discuss the validity of the fitting approach in dense (moderate and crowded) 

systems [39,31], where many-body interactions, which are favored by the closer proximity 

of the proteins, cannot be simply ignored. On this ground, in the current paper we decided 

to compare the parameters of protein pair potential retrieved from small angle X-ray 

scattering (SAXS) data analysis to the theoretical results obtained by Monte Carlo 

simulations. To do so, SAXS data were obtained in different chemical-physical conditions 

seeking to determine the limits of our data analysis approach. Of note, we focused our 

attention on moderated protein concentration to control and better understand the interplay 

between attractive and repulsive interaction potentials thus avoiding the extreme crowding 

conditions. 

We first analyzed the SAXS profiles of lysozyme solutions under different conditions of 

temperature, protein concentration and salt (NaCl) concentration, using the HSDY model 

under the RPA approximation. From there, we derived the pair potentials, the structure 

factors 𝑆(𝑞) and the corresponding radial distribution functions 𝑔(𝑟). The influence of 

temperature, salt and protein concentration on these functions is analyzed and discussed. 

Then, we performed Monte Carlo simulations to verify the adequacy of the fitting 

approach: First, we tested some hypotheses that are assumed to be valid in the derivation of 

the screened Coulomb potential, showing how they do not hold up in situations of non-

diluted systems and low salt concentrations; secondly, a consistency test between the 

experimental data analysis and the simulations was performed, showing the limitations of 

RPA closure relation under certain conditions; and finally, we propose a new method to fit 

SAXS data through MC simulations, dispensing with the use of closure relations and the 

systematic errors they produce. This last approach, as far as we know, represents a novelty 

in the SAXS literature and has the potential to be generalized to the analysis of protein 

mixtures, for which there is a lack in the literature in respect to a satisfactory theory and 

proper closure relations. 

The model protein, lysozyme, was chosen because it is a well-studied molecule and is 

commercially available in high purity. Also known as muramidase, it is an enzyme of the 

glycoside hydrolases family that catalyzes the hydrolysis of the 𝛽 − 1.4 bonds between the 

N-acetylmuramic acid and N-acetyl-D-glucosamine residues, which are part of the 

peptidoglycans forming the cell wall of gram-positive bacteria. Its high resolution structure 

has been known since 1965 [40], having a globular conformation composed of four 

antiparallel 𝛼-helixes and three antiparallel 𝛽-strands. A typical lysozyme contains about 
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129 amino acids, a molecular weight of 14.4 kDa and its isoelectric point pI is ≈ 11. In 

addition, it shows high thermal stability, with a melting temperature of 72∘ C at pH 5 [41]. 

Materials and Methods 

SAXS Theory 

A SAXS experiment of a sample constituted by particles in solution provides the 

measurement of the so-called “macroscopic differential scattering cross section” (shortly 

referred to as “intensity”), which is defined as the ensemble average of the squared 

modulus of the amplitude 𝐴(𝒒) of the X-ray wave scattered by the sample divided by the 

sample volume 𝑉 [20], 

𝐼(𝒒) =  
1

𝑉
〈|𝐴(𝒒)|2〉     (1) 

where𝒒 is the scattering vector, with modulus 𝑞 = 4𝜋sin𝜃/𝜆, 2𝜃 being the scattering angle 

and 𝜆 the X-ray wavelength. 𝐴(𝒒)corresponds to the Fourier transform of the sample’s 

electron density contrast, 𝛿𝜌(𝒓) = 𝜌(𝒓) − 𝜌𝑜, 

𝐴(𝒒) = ∫ 𝛿𝜌(𝒓)𝑒𝑖𝒒.𝒓𝑑𝒓
𝑉

     (2) 

where𝜌(𝒓) is the sample electron density at the position 𝒓 and 𝜌0 is the solvent constant 

electron density. For samples of monodisperse particles randomly oriented, the SAXS 

intensity only depends on the modulus 𝑞 and can be expressed as the product of the particle 

form factor 𝑃(𝑞), which is the orientational average (the average over the polar angles of 𝒒 

of the squared modulus of the X-ray amplitude 𝐹(𝒒) scattered by an isolated particle, 

𝐹(𝒒) = ∫ 𝛿𝜌(𝒓)𝑒𝑖𝒒.𝒓𝑑𝒓
𝜈

 (𝜈 is the particle volume), and the so-called measured structure 

factor 𝑆𝑀(𝑞), 

𝐼(𝑞) = 𝑛𝑃(𝑞)𝑆𝑀(𝑞).     (3) 

In this equation 𝑛 is the number density of particles (related to the molar particle 

concentration 𝐶by 𝑛 = 𝐶𝑁𝐴, 𝑁𝐴 being Avogadro’s number). The function 𝑆𝑀(𝑞) is related 

to the particle-particle structure factor 𝑆(𝑞) by means of the following equation 

𝑆𝑀(𝑞) = 1 + 𝛽(𝑞)[𝑆(𝑞) − 1],    (4) 

where𝛽(𝑞) is the coupling function, defined by the ratio between |𝑃1(𝑞)|2, the squared 

modulus of the orientational average of 𝐹(𝒒), and 𝑃(𝑞). If the symmetry of the particle-

particle potential is mostly spherical, the structure factor can be written in terms of the 

Fourier transform of the total correlation function ℎ(𝑟) = 𝑔(𝑟) − 1 as: 
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𝑆(𝑞) ≈ 1 + 𝑛 ℎ̂ (𝑞)   (5) 

To note, ℎ̂ (𝑞) is related to the Fourier transform �̂� (𝑞) of the direct correlation function 

𝑐(𝑟) according to the Ornstein-Zernike (OZ) relation, ℎ̂ (𝑞) = �̂� (𝑞) + 𝑛 ℎ̂ (𝑞) �̂� (𝑞). Hence 

Eq. (4) can be re-written as [42]: 

𝑆(𝑞) ≈
1

1 − 𝑛 �̂� (𝑞)
    (6) 

Since, according to Eqs. 4 and 6, for ≈ 0𝑆𝑀(𝑞) = 1, the form factor of a monodisperse 

protein in solution can be easily obtained through a SAXS experiment of a diluted protein 

sample. Alternatively, when the atomic structure of the protein is available and by 

assuming that this structure does not change when the protein is in solution, 𝑃(𝑞), as well 

as 𝛽(𝑞), can be calculated by available software such as CRYSOL [43] or SASMOL [30]. 

In our case, we used the lysozyme structure 6LYZ deposited in the Protein Data Bank 

(PDB) [45]. Plots of 𝑃(𝑞) and 𝛽(𝑞) calculated with SASMOL are shown in Fig. S1 in the 

Supplementary Material. The 𝑆(𝑞) function, on the other hand, can be obtained via a fit 

function that involves (i) an interaction model and (ii) a closure relation, which allows to 

derive, together with the OZ equation, a solution for equation 6. 

Interaction Model and RPA Closure Relation 

Suppose we can separate the protein-protein pair potential into two terms: 

𝑢(𝑟) = 𝑢0(𝑟) + 𝑈(𝑟)   (7) 

the first term being the potential of a reference system, in this case a hard-spheres fluid, and 

the second a perturbative Fourier-integratable potential. Here we assume that the direct 

correlation function 𝑐0(𝑟) of the reference system is given by the approximate solution of 

the OZ equation with the Percus-Yevick closure relation [46,22]. According to the RPA 

closure relation, the direct correlation of the perturbed system obeys the following 

expression [42]: 

𝑐(𝑟) = 𝑐𝑜(𝑟) − �̅�𝑈(𝑟)    (8) 

where �̅� = 1/𝑘𝐵𝑇, 𝑘𝐵 being Boltzmann’s constant and 𝑇 the absolute temperature. The 

advantage of this approach is that we can directly relate the structure factor to the 

perturbative potential through the equation 6: 

𝑆(𝑞) =
1

[𝑆𝑜(𝑞)]−1 + 𝑛�̅��̂�(𝑞)
     (9) 

where𝑆0(𝑞) is the PY structure factor, 
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[𝑆0(𝑞)]−1 = 1 −
12𝜂[𝜂(3 − 𝜂2) − 2]

(1 − 𝜂)4

𝑗1(𝑞𝜎)

𝑞𝜎
,     (10) 

�̂�(𝑞)is the Fourier Transform of 𝑈(𝑟), 𝜂 = 𝑛𝜋𝜎3/6 is the protein volume fraction, 𝜎 its 

diameter and 𝑗1(𝑥) is the first order spherical Bessel function. The validity of the Eq. 9 is 

conditioned to not very strong perturbative potentials. Furthermore, due to an ambiguity in 

the choice of the perturbation for 𝑟 < 𝜎, that is, in the region where the reference potential 

is infinite, the RPA relation does not guarantee the expected condition 𝑔(𝑟 < 𝜎) = 0. 

Following the proposal of Tardieu et al. [17] and endorsed by other authors [11,19,15], the 

perturbative potential is taken as a sum of a screened Coulomb potential and an attractive 

term also depicted by a Yukawian function. To note, the attractive Yukawa replaces the van 

der Waals term in the original DLVO potential. According to Ref. [47], we call this 

potential Hard-Sphere Double-Yukawa (HSDY) potential. Thus, the perturbative potential 

in eq. 7 will be 

𝑈(𝑟) = 𝑈𝑆𝐶(𝑟) + 𝑈𝐴(𝑟)    (11) 

𝑈𝑆𝐶(𝑟) =
𝜆𝐵𝑍2

(1 +
1

2
𝑘𝐷𝜎)

2

𝑒−𝑘𝐷(𝑟−𝜎)

𝑟
     (12) 

𝑈𝐴(𝑟) = −𝐽𝜎
𝑒−

(𝑟−𝜎)

𝐷

𝑟
     (13) 

The first screened Coulombian term, 𝑈𝑆𝐶(𝑟), is a function of the net charge of the protein, 

𝑍, and its diameter 𝜎, besides some experimental constants included in Bjerrum’s 

length𝜆𝐵 = 𝑒2�̅�/(4𝜋𝜀𝑜𝜀) (where 𝑒 is the proton charge in SI units, 𝜀0 the vacuum 

permittivity, 𝜀 the relative dielectric constant) and the inverse of Debye’s length 𝜅𝐷
−1 =

(8𝜋𝜆𝐵𝐼)1/2, where 𝐼 is the ionic strength of the solution due to the contribution of protein 

counterions and added salts. The attractive part, 𝑈𝐴(𝑟), depends on the depth 𝐽, which is the 

contact potential when two proteins are in contact (𝑟 = 𝜎), and 𝐷 is the decay range. The 

advantage of a Yukawa-like potential is such that it has been extensively explored in liquid 

theory [48], it has few parameters and a simple algebraic expression for its Fourier 

transform, which makes it interesting to use with RPA approximation. But, if we know how 

the repulsive term, represented by the screened Coulomb interaction, varies with 

temperature, ionic strength and other physical-chemical parameters, the parameters 𝐽 and 𝐷 

of the attractive term are not related to physical features of the systems and can only be 

considered phenomenological parameters difficult to predict. 
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Sample preparation and SAXS experiment 

A stock solution of lysozyme at 2.72 mM (40 mg/mL) was prepared in PBS buffer (NaCl 

137 mM, KCl 2.7 mM and phosfate 10 mM) in a day prior the experiment, using 

lyophilized proteins from Sigma-Aldrich (L6876). Proteins were solubilized at room 

temperature by magnetic stirring for one hour. The pH was adjusted to 7.4 with the aid of a 

pH-meter and concentrated solutions of NaOH and HCl. Stock solutions were then kept 

refrigerated until moments before use. On the day of SAXS measurements, we prepared the 

samples by dilution, testing ten different concentrations of lysozyme, ranging from 0.14 to 

1.36 mM (corresponding to the 2 − 20 mg/mL range). 

A first batch of SAXS data were collected in the Laboratório Nacional de Luz Synchrotron 

(LNLS, Campinas, Brazil). A distance between the sample holder and the detector of 

1.00 m was used, resulting in the 𝑞 range 0.013 − 0.5 Å-1. The exposure time of the 

samples to X-rays was 40 s, each measurement being repeated twice or three times. The 

temperature was kept stable with the help of a thermal bath and all measurements were 

replicated at 10, 23 and 37∘C. Measurements of some samples were taken after 4 h of 

preparation to check whether protein aggregation could have been occurred, but no changes 

were observed. Scattering due only to proteins and the hydration layer was isolated by 

subtracting the buffer scattering. Another set of measurements was performed at the B21 

beam-line of the Diamond Light Source (Harwell Science & Innovation Campus, Didcot, 

UK) operating at wavelength 𝜆 = 1.00 Å and with a sample to detector distance of 

4.014 m. The 𝑞 range was from 0.01 to 0.37 Å-1. A unique lysozyme concentration of 

1.36 mM (20 mg/mL) in Tris buffer at pH 8.0 was used. Measurements were replicated at 

seven different temperatures (10, 15, 20, 25, 30, 35 and 40∘ C) and two NaCl 

concentrations (0 and 50 mM). Calibrated scattering intensities were obtained by 

considering the primary-beam intensity, the detector efficiency, the samples’ transmission 

and by subtracting for the buffer contributions. 

The SAXS data analysis was made according to Eqs. 3, 9-11, using the software 

GENFIT [49]. It should be stressed that the form factor, 𝑃(𝑞), and the coupling function, 

𝛽(𝑞), were calculated from the PDB code 6LYZ, whereas the measured structure factor, 

𝑆𝑀(𝑞), was obtained from the HSDY potential model in a RPA approach. All the SAXS 

curves of each sample measured at different temperatures were simultaneously fitted. In 

each of these “global-fits”, we considered the protein charge and diameter as common 

parameters for all curves, while the attractive potential parameters, 𝐽 and 𝐷, were allowed 

to vary for each curve. The relative mass density of the first hydration shell was also taken 

as a shared parameter, being allowed to change between 1 and 1.15. 
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Monte Carlo simulations 

In the Monte Carlo (MC) simulations, proteins were represented as charged hard-spheres 

(macroions). All simulations were conducted in a cubic box with periodic boundary 

condition, using the Metropolis algorithm [50] in the canonical ensemble (𝑁, 𝑉, 𝑇) to 

sample the phase space. Each run started with a random initial configuration. Different 

interaction models were used here, as well as the presence or absence of explicit microions, 

each case being described below. 

From MC simulations we have calculated the structure factors as a function of the 

scattering vector 𝐪, according to the definition 

𝑆(𝒒) =
1

𝑁
〈|∑ 𝑒𝑖𝒒.𝒓𝒋

𝑁

𝑗=1
|

2

〉     (14) 

where𝒓𝑗is the position vector of the 𝑗-particle and the brackets refer to average over all the 

MC configurations. Besides, as the direction of the scattering vector is arbitrary here (our 

system is homogeneous and isotropic), the isotropic structure factor 𝑆(𝑞) has been 

calculated by an average of Eq. [eq:MC1] for a set of three distinct directions of the unit 

vector associated to 𝒒, �̂� = (1,0,0), (0,1,0) and (0,0,1), following the method described by 

Frenkel et al. [51]. The uncertainties were obtained by calculating the standard deviation of 

11 independent replicates, each one conducted with 107 Monte Carlo steps after 

equilibration. 

We have first tested with MC simulations the validity of the screened Coulomb (SC) 

potential (Eq. 12) under the same physical-chemical conditions used in the experiments. 

This was done by comparing the MC structure factors produced by hard-spheres interacting 

by the SC potential with the 𝑆(𝑞) of a system composed by the same spheres, but also with 

explicit microions (counterions and salt ions), all of them interacting by the standard 

Coulomb potential. 

Thus, two energy calculation methods have been employed. In the first method, the 

potential energies were simply calculated by truncating the SC potential to half the size of 

the box. In the second case, the potential energies were calculated using the PME method 

(Particle Mesh Ewald) [52,53,54,55], due to the long-range interactions and the high 

number of microion particles. This method is based on using fast Fourier transform (FFT) 

techniques to evaluate the reciprocal part of the Ewald sum [56], which considerably speeds 

up the computational time. In this step, the simulations were performed with 𝑁 = 30 

macroions of charge 7 and radius 14 Å, while the number of monovalent microions varied 

according to the salt concentration, their radii being fixed in 1 Å. 

Next, in order to test the validity of the PY-RPA approximation of particles interacting with 

the HSDY potential, we performed MC simulations of charged spheres interacting with the 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



HSDY potential and by fixing the parameters of the potential to the values derived from the 

best fit of SAXS curves with the model described in Sect. [interactionm]. If the PY-RPA 

relation does hold, then the 𝑆(𝑞) functions obtained from the fittings to SAXS experimental 

data and the simulated structure factors would be expected to be consistent. For these 

simulations we used 𝑁 = 50 macroions, having tested that larger numbers of 𝑁 lead to 

similar results. 

Results 

Effects of monovalent salt and temperature 

The influence of temperature and monovalent salt on lysozyme SAXS curves was evaluated 

for two data sets: in the first one we fixed the lysozyme concentration at 1.36 mM 

(20 mg/mL) and allowed the temperature and monovalent salt concentration, hence ionic 

strength, to vary, respectively, between 10 − 40∘C and 0 − 150 mM NaCl; in the second 

one, the monovalent salt concentration was fixed at 150 mM and more diluted protein 

solutions were assayed at different temperatures. Here, we focused our discussion only in 

the first data set, whereas the second one is analyzed in the Supplementary Material. For 

the measurements made with 0 and 50 mMNaCl, the temperature varied in steps of 5∘C in 

the range 10 − 40∘C at pH 8.0 (Tris buffer), while the curves at 150 mM of salt were 

collected at 10, 23 and 37∘C and pH 7.4 (PBS buffer). 

Following the methodology described in Sect. 2.3, we performed a simultaneous fit of all 

curves at different temperatures for a given salt and protein condition. Fig. 1 shows the 

experimental data along with the best global-fit curves obtained with GENFIT. The HSDY 

model (Eq. 11) used here contains four main fitting parameters: the protein net charge 𝑍, 

the protein diameter 𝜎, the decay length 𝐷 and depth 𝐽 of the Yukawa potential. Here, we 

assume that the charge and the protein diameter remain constant over the entire temperature 

range, so that only 𝐷 and 𝐽 are allowed to vary during the fitting procedure. Although 

temperature may affect the mean hydrodynamic radius of proteins and/or the pKa of amino 

acid groups, and hence its charge, we considered these effects as secondary and negligible 

under our experimental conditions. 
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Figure 1: SAXS curves and global fits of lysozyme solutions at 1.36 mM and three salt 

concentrations [NaCl] = 0, 50 and 150 mM. Gray dots and solid lines correspond to 

experimental SAXS intensity I(q) and theoretical I(q) (Eq. 3) taking into account P(q) from 

lysozyme crystallography structure 6LYS (PDB) and the measured structure factor SM(q) 

calculated through Eqs. 4,9-11, respectively. In each global fit, the protein charge and 

diameter did not vary with temperature. Curves are shifted vertically for better viewing. 

Fitting parameters are displayed in Tables 1-3. 

To observe qualitatively the behavior of the SAXS curves with temperature and NaCl 

concentration, we re-plot in Fig. 2 the experimental data (not vertically shifted) together 

with the lysozyme form factor obtained by the GENFIT global-fit. To facilitate viewing, 

only three temperatures are shown in each graph. The solid black line represents the form 

factor 𝑃(𝑞) of the crystallographic structure 6LYZ (PDB), calculated by GENFIT, which 

estimated the relative mass density of the first hydration shell in 1.059. In this way, it is 

possible to compare the deviations caused by the structure factor in relation to 𝑃(𝑞), 

especially at low 𝑞. 

As one can observe, there is a clear influence of temperature raising on the scattering 

curves at the highest ionic strength (150 mM NaCl), but to a lower extent for the lowest salt 

concentration. In all cases, lowering the temperature leads to higher scattering intensities in 

the region of 𝑞 < 0.1 Å-1. This means that the pair potential tends to be less repulsive, or 

more attractive, at lower temperatures. This effect had already been observed by Malfois et 

al. [11], for 126 mg/mL lysozyme solutions in 0.6 M phosphate buffer and pH 7.5. Tardieu 

et al. [17] also observed the same effect near the isoelectric point of lysozyme, pH = 10.5, 

with [LYS] = 74 mg/mL, which means that temperature should affect, at least, the attractive 

component of the potential. Besides, diluted and/or low ionic strength solutions are less 

sensitive to temperature changes, whereas the opposite is true for denser and/or more 
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screened systems [27]. Notice, indeed, that the greatest variation of 𝐼(𝑞) occurs with 

1.36 mM lysozyme and 150 mM of NaCl (Fig. 1). Finally, the addition of salt changes the 

interaction from repulsive to mainly attractive, in agreement with previous results of 

Ducruix et al. [57] at pH = 4.5 and 18∘ C. 

 

Figure 2: SAXS curves of 1.36 mM lysozyme recorded at different temperatures and NaCl 

concentrations. The black solid lines represent the form factors derived by the GENFIT 

global-fits shown in Fig. 1. 

Note that for all NaCl concentrations, the employed protein-protein interaction HSDY 

potential results in 𝑆(𝑞) functions, calculated within the RPA closure relation (Eq. 9), 

which lead to modelled 𝐼(𝑞) functions (Eq. 3) that fit quite well to the scattering data. The 

adjusted parameters are shown in Tables 1-3. However, the physical interpretation of these 

parameters, mainly for the salt-free case, is dubious as it will be discussed in the following. 

The diameter 𝜎 practically does not change with ionic strength, remaining around 28 Å, 

which is consistent with the values reported on the literature [58,59,60]. According to the 

results presented in Table 1 (0 mMNaCl) the protein net charge results as large as 𝑍 = 4.8. 
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Besides, the 𝐽 values remained practically the same independent of temperature whereas 𝐷 

values resulted quite narrow and diminished with temperature increase. 

On the other hand, the protein charge for solutions with 50 mM NaCl at pH 8 (Table 1) was 

around 𝑍 = 7.4, the same value predicted by the PROPKA software [61,62], using the 

6LYZ crystal structure as input. The charge found for solutions with 150 mM NaCl (pH 

7.4) was around 𝑍 = 6.4. Note that the width 𝐷 the attractive potential well varied between 

3.5 − 4.8 Å (Tables 2-3). These values are very close to that reported by Malfois et al. [11] 

(3 Å) at the same pH, although they used a four times greater ionic strength. Similarly, 

other authors also proposed a short-range attraction around 3 Å [17,19]. The depth 𝐽, 

expressed in units of 𝑘𝐵𝑇, assumes higher values with 150 mM of salt (8 − 11) than with 

50 mM (5.5 − 8.4). In both cases it reaches its maximum value at the lowest studied 

temperature, 10∘ C. Our data analysis thus suggests that the attractive term varies with 

temperature and the ionic strength. Tardieu et al. [17], in contrast, attempted to adjust a 

series of 100 mg/mL lysozyme solutions, at pH 4.5, within a NaCl concentration range 

between 0 − 350 mM, keeping 𝐽 = 2.65 and 𝐷 = 3 Å constants. This approach, which 

practically maintained the attractive potential invariant with salt, required the protein 

charge to progressively decrease from 𝑍 = 6 to 2.1 as salt was being added, that according 

to the authors is not in accordance with a realistic charge regulation process. We will return 

to this point latter in the text. 

Table 1 Fitted parameters of SAXS curves shown in Fig. 1 with 1.36 mM of lysozyme, 0 mM 

NaCl at pH 8. 𝑍 and 𝜎 correspond to protein net charge and diameter, respectively, while 𝐽 

and 𝐷 correspond to depth and decay range of the well potential, respectively. The 

uncertainties affect the last significant digit in each parameter value.  

𝑇 (C) 𝐽 (𝑘𝐵𝑇) 𝐷 (Å) 𝑍 (e) 𝜎 (Å) 

10 8.0 3.0 4.8 28.0 

15 8.0 2.4 4.8 28.0 

20 8.9 2.0 4.8 28.0 

25 8.7 1.6 4.8 28.0 

30 8.6 1.4 4.8 28.0 

35 8.0 1.4 4.8 28.0 

40 8.5 1.1 4.8 28.0 
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Table 2 Fitted parameters of SAXS curves shown in Fig. 1 with 1.36 mM of lysozyme, 

50 mM NaCl at pH 8. 𝑍 and 𝜎 correspond to protein net charge and diameter, respectively, 

while 𝐽 and 𝐷 correspond to depth and decay range of the well potential, respectively. The 

uncertainties affect the last significant digit in each parameter value.  

𝑇 (C) 𝐽 (𝑘𝐵𝑇) 𝐷 (Å) 𝑍 (e) 𝜎 (Å) 

10 8.4 4.2 7.4 28.4 

15 6.7 4.8 7.4 28.4 

20 6.0 4.9 7.4 28.4 

25 5.5 4.4 7.4 28.4 

30 6.0 4.2 7.4 28.4 

35 6.0 3.9 7.4 28.4 

40 5.8 3.7 7.4 28.4 

     

Table 3 Fitted parameters of SAXS curves shown in Fig. 1 with 1.36 mM of lysozyme, 

150 mM NaCl at pH 7.4. 𝑍 and 𝜎 correspond to protein net charge and diameter, 

respectively, while 𝐽 and 𝐷 correspond to depth and decay range of the well potential, 

respectively. The uncertainties affect the last significant digit in each parameter value.  

𝑇 (C) 𝐽 (𝑘𝐵𝑇) 𝐷 (Å) 𝑍 (e) 𝜎 (Å) 

10 11.0 4.1 6.4 28.0 

23 9.0 4.1 6.4 28.0 

37 8.0 3.5 6.4 28.0 

In terms of structure factors, Fig. 3, first panel, shows the 𝑆(𝑞) functions obtained from the 

fittings to the experimental data (Eq. 9). As previously mentioned, the scattering intensity 

of salt-free solutions has a weak temperature dependence, and this is reflected in the 

structure factors. In this case, only a tiny 𝑆(𝑞) increase can be observed as the temperature 

increases, as well as a slight shift in its peaks and valleys. The curves indicate a strong 

predominance of repulsive interactions, favored by the low ionic screening. At 50 mM 

NaCl, the effects are more noticeable: the curves are less repulsive and there is a greater 

separation between them (at the smallest 𝑞, 𝛥𝑆(𝑞) ≈ 0.1 between 10 and 40∘ C). The 

height of the peaks also fluctuates a little and they are slightly shifted to the right. Finally, 

at 150 mM of salt, the structure factors already exhibit a typical profile of attractive 

systems. The separation of the curves widens more with the change in temperature whereas 

the displacement of the peaks is no longer observed, but only a reduction in their 

amplitudes as temperature increases. 

Regarding the protein-protein interaction potentials, they can be visualized in the second 

panel of Fig. 3. First, there is a clear predominance of electrostatic repulsion in the absence 
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of NaCl and a considerable potential barrier between 1-2 𝑘𝐵𝑇. The repulsive tail extends to 

approximately 3-4 protein diameters, something close to 100 Å. The attractive region, in 

turn, is only significant very near the protein surface. We also observed that the potential 

peak decreases as temperature gets lower, thus reducing the colloidal stability. Such a peak 

also decreases as more salt is added, due to the larger net charge screening by the ionic 

atmosphere. At 50 mM NaCl this energy barrier does not exceed 1 𝑘𝐵𝑇 and at 150 mM 

NaCl it does not reach even 0.1 𝑘𝐵𝑇, almost vanishing for temperatures below 23∘ C. The 

potential becomes mostly attractive and short ranged (1.5 diameters, or ∼ 40 Å). 

 

Figure 3 Structure factors, interaction potentials and radial distribution functions of 

lysozyme solutions, [LYS]=1.36 mM, at different temperatures and NaCl concentrations. 
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The radial distribution functions (RDFs) can be derived from the structure factors by means 

of a Fourier transform. In the case of homogeneous and isotropic solutions of spherically 

symmetric particles, they are defined by 

𝑔(𝑟) = 1 +
1

2𝜋2𝑛𝑟
∫ 𝑞

∞

0

[𝑆(𝑞) − 1]sin(𝑟𝑞)𝑑𝑞    (15) 

Of course, lysozyme is not a perfect sphere, but its globular shape allows us to make such 

an assumption with a small margin of error. The very interactive model (HSDY with RPA) 

here employed also takes into account a spherical symmetry. Thus, it is worth analyzing 

what would be the radial distributions obtained by applying Eq. 15 to the 𝑆(𝑞) obtained by 

the SAXS global fits. The results are shown in Fig. 3 third panel. First of all, we observe 

that, for all the salt concentrations, at 𝑟 < 𝜎the 𝑔(𝑟), which should be zero due the 

impenetrability of the particles, is not null, an expected results caused by the well-known 

inconsistency at 𝑟 < 𝜎 of the simple RPA approximation (see, for example, Ref. [63] and 

references therein) that, in most cases, does not dramatically affect the consistency of 𝑔(𝑟) 

for 𝑟 greater than 𝜎. However, at 0 mM NaCl, we observe an inconsistency typically not 

observed for 𝑟 > 𝜎: in some regions (highlighted by the rightmost arrow) 𝑔(𝑟) shows 

negative values, which have not a physical meaning. In contrast, the 𝑔(𝑟) functions from 

lysozyme solutions with 50 and 150 mM salt are always positive for 𝑟 > 𝜎. At 50 mM, in 

the vicinity of the protein surface, up to 𝑟 ≈ 1.2𝜎, we can observe a region of 𝑔(𝑟) greater 

than 1, indicating a positive correlation, followed by a region with 𝑔(𝑟) < 1, whereas at 

150 mM with there is only an “attractive” region of about 1.5 diameters (42 Å). The peaks 

in both cases indicate that some transient lysozyme pairs may occasionally form. Besides, 

as the temperature increases the 𝑔(𝑟) functions come closer to unity (dashed line on Fig. 3 

lower row), which may be the result of a greater thermal disordering of the system. 

Therefore, our results clearly point out the failure of HSDY mode with RPA closure 

relation in the analysis of SAXS data at non-diluted protein concentration and low ionic 

strength. 

Revisiting the HSDY under RPA closure relation model 

To verify the validity of the RPA model, let’s first analyze the screened Coulomb potential 

assumptions (Eq. 12). This potential, developed by Verwey and Overbeeck [35], is based, 

among other approximations, on the linearization of the Poisson-Boltzmann equation (PB), 

leading to a Helmholtz equation. The two main hypotheses that allow the linearization of 

the PB equation are [33]: (i) the potential of mean force (PMF) corresponds to the mean 

electric potential energy𝑢𝑃𝑀𝐹(𝑟) = 𝑒𝑍𝜓(𝑟) (where 𝜓(𝑟) is the mean electric potential), 

which is the case for sufficiently diluted systems, where many-body effects become 

negligible; and (ii) 𝜓(𝑟) is considered small enough to approximate the exponential of the 

PB equation by a linear term, namely 𝑣𝑒𝜓/(𝑘𝐵𝑇) ≪ 1, where 𝑣 is the valence of the 

microions and 𝑒 the elementary charge. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



The first hypothesis can be tested by obtaining the “exact” PMF, through Monte Carlo 

simulations of a system of charged hard-spheres interacting through the SC potential, under 

the same physical-chemical conditions of SAXS experiments. If these two potentials are 

equivalent, then we are within the limits of this approximation. To this aim, we performed 

MC simulations with 𝑁 = 30 macroions of charge 𝑍 = 7 𝑒 and diameter 𝜎 = 28 Å, in 

addition to salt microions and counterions with a radius of 1 Å, all monovalent (𝑣 = 1). 

The PMF were calculated by converting the radial distribution functions,𝑢𝑃𝑀𝐹(𝑟) =

−𝑘𝐵𝑇 ln 𝑔(𝑟). What we observed, Fig. 4, was that the simulated PMF (which represents the 

“exact” function) does not correspond to the SC potential of the system when the salt 

concentration is zero, where the only contribution to the ionic strength comes from counter-

ions. On the other hand, when 50 or 150 mM of salt is added to the protein solution, the 

two potentials actually converge, so that only in these cases the hypothesis (i) is being 

satisfied. However, in practice, we know that our solutions without the addition of NaCl 

also have an extra ionic strength due to the buffer and the acids and bases used in the pH 

correction, which tends to favor the fulfillment of the hypothesis. 
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Figure 4: Comparison between the mean force potential (PMF) and the screened Coulomb 

potential (SC) of a charged hard-sphere system, with Z = 7 e and σ = 28 ˚A. The macroion 

(”protein”) concentration was fixed at 1.4 mM and three salt conditions were tested: 0, 50 

and 150 mM. Red, blue and black colors denote temperatures of 10, 23 and 37◦ C, 

respectively. 

To check the validity of the second hypothesis, we plot the ratio𝑢𝑃𝑀𝐹(𝑟)/(𝑍𝑘𝐵𝑇), which 

corresponds to 𝑒𝜓(𝑟)/(𝑘𝐵𝑇), as a function of 𝑟. Notice that we have assumed monovalent 

microions (𝑣 = 1). Although this is an a posteriori check, it is obvious that the adjusted 

potential needs to be consistent with the initial hypothesis. Fig. 5 shows the plots of 

𝑒𝜓(𝑟)/(𝑘𝐵𝑇) at three salt concentrations, for 1.36 mM lysozyme and 𝑇 = 10∘ C, being the 

curves at other temperatures very similar. As one can see, the case that least satisfies the 

condition 𝑒𝜓/𝑘𝐵𝑇 ≪ 1 is again the one corresponding to the smallest ionic strength. Since 

none of the hypotheses (i) and (ii) is fully verified when we have a non-diluted protein 

solution (20 mg/mL) with low salt concentration, we decided to investigate whether this 

could cause inconsistencies in the structure factors and, therefore, in the fit parameters. 
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Figure 5: Reduced electrical potential of solutions with 0 (solid), 50 (dashed) and 150 

(dotted) mMNaCl, 1.36 mM lysozyme and T = 10◦ C. The DLVO approximation requires 

small values (≪ 1) of this potential so that it can be applied, which can be favored by the 

addition of salt, for example. 

To this aim, we performed MC simulations and compared the structure factors of two types 

of systems: one, composed of charged spheres interacting through the SC potential; and 

another, in addition to the macrospheres, also composed of explicit microions (counterions 

and salt ions) interacting through the standard Coulomb potential hereafter called C 

throughout the text and performed with the PME method. The first system is the 

approximation of the second one, as described by Verwey and Overbeek [35]. This 

comparison was made in different values of protein concentration (0.2, 0.8 and 1.4 mM), 

temperature (10, 23 and 37∘ C) and salt (0, 50 and 150 mM), totaling 27 distinct conditions, 

some of them are shown in the Fig. 6. As one can see, the SC and C structure factors are 

quite similar in the more diluted cases (0.2 mM) and/or with higher ionic strength 

(150 mM). Only small deviations occur as the concentration increases and/or the salt is 

removed, mainly at the beginning of the curves (low q) and in the region of the main peak. 

These differences, by themselves, should not significantly alter the adjustments of the 

SAXS curves, but they can be a major source of error for densities greater than 1.4 mM and 

low salt. Thus, although the hypotheses are not being fully satisfied, the SC potential still 

seems a reasonable approximation under the conditions studied, at least in terms of the 

structure factor. The curves behavior at the other temperatures (23 and 37∘ C), is 

completely analogous. 
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Figure 6: Comparison of the structure factors produced by the standard Coulomb 

potential, calculated by the PME method, and the screened Coulomb potential (SC). The 

simulated system is composed of 50 charged hard-spheres (Z = 7 e, σ = 28 Å) with and 

without explicit microions, respectively. The plots show different concentrations of 

macroions and salt, all at 10∘ C. 

Since the SC potential seems to introduce only small deviations in our fittings, let us now 

investigate whether the same occurs for the RPA approximation. To reach this purpose, we 

performed two types of analysis. In the first analysis, we performed MC simulations with 

the HSDY potential, by using the same parameters obtained from the GENFIT analysis of 

SAXS experiments (Tables 1-3), and we compared the MC structure factors with those 

found by GENFIT. Notice that the ionic strength in the MC simulations was 𝐼 = 𝐼𝑆 + 𝐼𝑐, 

where 𝐼𝑆 correspond to the concentration of NaCl used in the SAXS experiments and 𝐼𝑐 =

9 mM is the calculated ionic strength due to the protein counterions (at 1.36 mM lysozyme) 

and to the buffer charged species. Inversely, in the second analysis we used the MC 𝑆(𝑞) 

structure factors simulated in the previous analysis and calculated their corresponding 

theoretical SAXS curves (by using Eqs. 3-4). Then, GENFIT software was applied to check 

if the model reproduced the parameters used in the MC simulations, to verify consistency. 

Results of the first analysis are shown in Fig. 7. For the lowest ionic strength (9 mM), we 

clearly see a big difference. The MC simulated 𝑆(𝑞) functions at 10 and 25∘ C, for 

example, show much more intense oscillations than the 𝑆(𝑞) retrieved from the fit to the 

experimental data. This difference only becomes smaller at 35∘ C. Here, evidently, the 
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RPA closure relation fails in terms of consistency with the MC simulation, much more than 

the SC potential. A better consistency is observed when we raise the ionic strength to 

59 mM (see Fig. 7). At 25∘ C, for example, both 𝑆(𝑞) functions almost coincide with the 

fitted ones. The only exception was the curve at 10∘ C, which underwent a phase transition 

(aggregation), see Fig. 8. Likewise, all the simulations with 150 mM of salt also indicated 

protein aggregation, probably due to the strong attractive potential predicted by the fit. This 

indicates another inconsistency of the model, since the real protein solutions did not 

aggregate under these conditions. Perhaps, further studies on the phase diagram of the 

HSDY model in question could better reveal the conditions under which it leads to non-

physical predictions like this. 

 

Figure 7: Comparison of S(q) functions obtained by experimental fit (solid line) and by MC 

simulation (squares) at two salt concentrations, 9 and 59 mM, and three temperatures, 10, 

25 and 35◦ C. The macroion concentration was set at 1.36 mM. The MC simulations were 

performed with the same parameters obtained from the fittings to the experimental data, in 

which the HSDY under RPA model was applied. 
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Let us turn our attention now to the second analysis, where 𝐼(𝑞) curve obtained by MC 

simulations were fitted with the HSDY/RPA model. Results confirm what was deduced in 

the first analysis. Indeed, we were unable to reproduce the simulation parameters in cases 

of dense (1.36 mM) and low salt solutions (9 mM). Fig. 9 shows three attempts to adjust 

this condition at a temperature of 25∘ C (analogous results are obtained at 10 and 35∘ C). 

The first fit was made by setting the parameters identical to those used in the simulation 

and the others (fit 2 and 3) leaving the parameters free to vary. As we can read in the figure 

caption, where fitting parameters are reported, although we find similar values for the 

radius and the particle charge, the parameters of the attractive term, 𝐽 and 𝐷, present very 

large percentage deviations. These deviations are smaller, but not negligible, as we reduce 

the system to 0.8 and 0.2 mM (data not shown). On the other hand, for ionic strengths of 

59 mM we get much better fits, see Fig. 9. In this case, we can find parameter sets (reported 

in the figure caption) with small percentage deviations and 𝜒2 values, thus inferring a clear 

consistency between the adjustments and the simulations (one is able to reproduce the other 

with a low margin of error). 

 

Figure 8: Final configurations of two MC simulations, one where aggregation occurred 

(left panel) and another where there was no aggregation (right panel). The first 

corresponds to a temperature of 10◦ C and the second to 25◦ C, both with 50 mM of NaCl. 

The parameters used in the simulations were those obtained in the adjustment with the 

HSDY/RPA model. 

It is important to note that the simulations generate data in greater quantity and precision 

than the SAXS experiment. While in the simulation we obtained values from 𝑆(𝑞) up to 

𝑞 = 2.4 Å-1 and with very small standard deviations, in the experiment we measured 𝑞 at 

most up to 0.5 Å-1 and with considerable fluctuations at the largest 𝑞. Thus, the deviations 

that we observed in fitting the simulated data still underestimate the deviations that are 

produced in the fitting to the experimental curves. This can even be reflected in the 

diameter and the charge of the protein, which behaved well in this last analysis. 
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In fact, there are a number of works in the literature that reported deviations in the 

lysozyme charge at low salt concentrations, using DLVO-like potentials plus some closure 

relation approach.In our case, the adjusted charge for the low salt solutions (𝑍 = 4.8 e, see 

Table 1) is underestimated compared to the cases with 50 and 150 mM NaCl, but also with 

the PROPKA prediction and some tabulated titration curves [64,65]. The latter estimated a 

charge 𝑍 ≈ 8 at the pHs we are working on (7.4 and 8). Ortore et al. [29] also obtained an 

underestimated lysozyme charge of approximately 5.5 at pH 7, working with dense 

solutions (30-120 mg/ml) and no salt other than the buffer (Table 4). In a later work [30], 

however, an increase in ionic strength up to 30 mM NaOH was sufficient for the adjusted 

charge to be around 8.5, at a similar pH. Noteworthy, Winter et al. [26,27,28], although 

working with dense (100 mg/mL) and salt-free solutions, at pH 7 and 25 mM Tris buffer, 

always considered the lysozyme charge fixed at its expected value, 𝑍 = 8. In this case, we 

don’t know if 𝑍 would be underestimated if it would be treated as a free parameter. 

 

Figure 9: Fits (1, 2 and 3) of the intensity curves derived from MC simulations (black dots) 

for two different salt concentrations, (A) 9 mM and (B) 59 mM. Particle protein 

concentration and temperature are fixed at 1.36 mM and 25◦ C. The adjusted parameters 

and chi squared values, (Z, σ, J, D, χ2 ), are: (A) fit 1 = (4.8, 28, 8.7, 1.6, 5.7), fit 2 = (4.2, 

28.4, 12.2, 4.6, 31.4), fit 3 = (4.6, 27.6, 73, 1.2, 5.7); (B) fit 1 = (7.4, 28.4, 5.5, 4.4, 15.4), 

fit 2 = (7.1, 28.4, 5.1, 5.2, 0.3), fit 3 = (7.1, 28.4, 6.2, 4.3, 0.2). The units are the same as in 

Table 1. 

Some other authors who worked with dense lysozyme solutions and low salt concentration 

also reported an underestimated charge value when using a HSDY potential and RPA as a 

model (Table 4) [17,64,65,19]. It is important to mention that these authors worked with 

protein densities and charges much higher than ours, so that their systems deviate even 

further from the ideal fitting conditions. Thus, on the contrary to what these authors claim, 

the HSDY under RPA model is not appropriate to explain the lysozyme-lysozyme 

interactions under the exploited experimental conditions 
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LYS 

(mg/mL) 

salt 

(mM) 
pH buffer (mM) T (◦C) Z (e) σ(Å) J (kBT) D(Å) 

Tardieu et al. (1999) [17] 100 0 - 350 4.5 50 (acetate) 18 6 – 21 32.4 2.65 3 

Narayanan et al. (2003) [19] 40 – 80 8.6 (NaCl) 4.6 H2O 35 6 36 10 – 8 3.8 – 3.3 

Ortore et al. (2008) [29] 30 – 120 0 7.0 100 (phosphate) 25 ~5.5 * * 2.5 

Ortore et al. (2009) [30] 100 30 (NaOH) 7.5 D2O 20 ~8.5 * ~10 ~3 

Winter et al. (2011) [26] 100 0 7.0 25 (Bis-Tris) 5 – 25 8 29.9 7 – 4.4 2.7 

Winter et al. (2012) [27] ~5 –  170 0 7.0 25 (Bis-Tris) 8 – 45 8 29.9 6 – 2 3 

This paper (2021) 2 – 20 0 7.4 10 (PBS) 10 - 40 4.9 28 8 – 8.5 3 – 1 

 

Table 4: Some papers in the lysozyme literature that use a HSDY model to fit SAXS data 

from high protein and low salt concentrated solutions. Asterisks represent data that is not 

easily identifiable in the papers. 

In-solution SAXS data from lysozyme analysed by Monte Carlo 

simulations 

According to the previous discussion the modeling of the SAXS curves through the 

HSDY/RPA model is subject to limitations inherent to the approximations involved in the 

model, especially regarding the closure relation, but also to a lesser extent the SC potential 

(and even, possibly, the Percus-Yevick approximation for the structure factor, since we are 

dealing with dense systems). The combination of these various approximations, it seems to 

us, can lead to overestimated or underestimated fitting parameters, even though the curves 

are well-fitted, especially in conditions of low ionic strength and moderate/high protein 

density. 

One way to overcome the inconsistencies is to adjust the structure factor through Monte 

Carlo simulations. In this case, we can keep in our model only the interaction potential 

HSDY, taking as input a certain set of initial parameters, and derive the corresponding 

structure factor 𝑆(𝑞) by means of a thermodynamic average in the ensemble of 

configurations. From the 𝑆(𝑞) function determined by MC it is possible to obtain the 

measured structure factor 𝑆𝑀(𝑞), according to Eq. 4, where the function 𝛽(𝑞) =

|𝑃1(𝑞)|2/𝑃(𝑞) can be calculated through the PDB file of the protein using, for example, the 

GENFIT software itself. Moreover, by using Eq. 3, the MC intensity𝐼𝑀𝐶(𝑞) can be 

calculated and compared to the experimental data. Hence, it is possible to fit an 

experimental SAXS curve𝐼𝑒𝑥𝑝(𝑞) by minimizing the reduced 𝜒2 
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𝜒2 =
1

𝑁𝑞
∑ (

𝐼𝑒𝑥𝑝(𝑞𝑘) − (𝑘𝐼𝑀𝐶(𝑞𝑘) + 𝐵)

𝜎𝑒𝑥𝑝(𝑞𝑘)
)

2
𝑁𝑞

𝑘=1

     (16) 

where𝜅 and 𝐵 are a scaling factor and a flat background necessary when SAXS data are in 

arbitrary unit as well as when the buffer subtraction was not accurate. Most importantly, in 

order to obtain a good fit, all the parameters of the HSDY model are changed and, for each 

set of them, the MC simulations are repeated. This general strategy, as far as we could see, 

represents a novelty in the protein SAXS literature. 

Here, we applied this MC fitting procedure to all the SAXS curves already analysed with 

GENFIT (Fig. 1). Results are reported in Fig. 10, where, for each salt concentration best fits 

were obtained of three different temperatures. The obtained parameters are reported in the 

Tables 5, 6 and 7. 

Table 5 Monte Carlo-fitted parameters of lysozyme curves at 1.36 mM and 0 mM of salt 

added. Here, 𝑍 is the net charge of the proteins, 𝜎 is its diameter, 𝐽 and 𝐷 are the contact 

potential and the decay range of the attractive Yukawa term, respectively, and 𝐼 is the ionic 

strength. 

𝑇 (oC) 𝐽 (𝑘𝐵𝑇) 𝐷 (Å) 𝑍 (e) 𝜎 (Å) 𝐼 (mM) 

10 5 3 7 28 19 

25 2 3 7 28 19 

40 1 3 7 28 19 

      

Table 6 Monte Carlo-fitted parameters of lysozyme curves at 1.36 mM and 50 mM of salt 

added. 

𝑇 (oC) 𝐽 (𝑘𝐵𝑇) 𝐷 (Å) 𝑍 (e) 𝜎 (Å) 𝐼 (mM) 

10 5 3 7 28 59.5 

25 2 3 7 28 59.5 

40 1 3 7 28 59.5 

      

Table 7 Monte Carlo-fitted parameters of lysozyme curves at 1.36 mM and 150 mM of salt 

added. 

𝑇 (oC) 𝐽 (𝑘𝐵𝑇) 𝐷 (Å) 𝑍 (e) 𝜎 (Å) 𝐼 (mM) 

10 5.6 3 7 28 159.5 

23 5.3 3 7 28 159.5 

37 5.0 3 7 28 159.5 
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Noticeable, with this methodology we were able to obtain very good fits using the same 

values of 𝐷, 𝑍 and 𝜎 for all SAXS curves from lysozyme. The only parameters we had to 

change in this case were 𝐽 and the ionic strength 𝐼. It is important to highlight that, with the 

Monte Carlo technique, it was possible to fit the curves with low ionic strength using a net 

charge value very close to its expected value, which we had not achieved before using the 

HSDY/RPA model. This reinforces, once again, the inadequacy of the closure relation 

under these conditions. 

 

Figure 10: Experimental data (black dots) fitted through Monte Carlo simulations (pink 

line). The curves are offset vertically for easier viewing. 

 

If we compare the radial distribution functions and the structure factors fitted with Monte 

Carlo (Figs. 11 and 12) with those obtained by fitting with the HSDY/RPA model (Fig. 3), 

we noticed that the behavior of these curves is very similar, but with some differences that 

are worth pointing out. While all 𝑔(𝑟) adjusted with the RPA relation have a peak located 

near the surface of the proteins, not all simulated ones do. In this case, the peaks gradually 

form as the salt concentration increases or the temperature decreases. Furthermore, for 

150 mM of salt, the simulated functions still have a small region in which 𝑔(𝑟) < 1, that is, 

where the potential of mean force is repulsive, which is essential for proteins to don’t 

aggregate. Regarding the structure factors, the first peak almost does not appear in the 

simulated functions with 0 mM NaCl, while it was clearly visible in the adjustments with 

RPA. 
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Figure 11: Radial distributions of the simulated fits with MC. 
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Figure 12: Structure factors of the simulated fits with MC. 

 

Finally, the protein-protein interactions adjusted with Monte Carlo (fig. 13) differ from the 

potentials obtained with the HSDY/RPA model (fig. 3) in the following points: the latter 

always have a small attractive region near the surface of the protein, which now appears 

only at 10∘ C and salt equal to or greater than 50 mM, and a little at 23∘ C and 150 mM 

salt. In general, MC-adjusted potentials are much more repulsive than the previous ones. 

The higher potential barrier, in this case, helps to explain why lysozyme solutions remain 

stable and do not undergo aggregation. The 𝐽 values found here are also lower than the 

previous ones, ranging between 1 − 5, for 0 and 50 mM NaCl, and 5 − 5.6 for 150 mM 

NaCl. 
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Figure 13: Mean lysozyme-lysozyme interaction potentials obtained in the Monte Carlo 

adjustments. 

Conclusion 

Here we showed that the HSDY + RPA model was able to fit the experimental curves, 

although it produced some physical inconsistencies: unrealistic radial distribution functions 

and underestimation of charges, especially under conditions of moderated and high and low 

salt concentration, in addition to potentials that lead to aggregation when simulated. We 

argued, through Monte Carlo simulations, that this is probably due to the limitations, 

already known in literature, in the simple RPA closure relation in these conditions. We also 

tested the validity of the screened Coulomb potential, but we found that eventual deviations 

it produces are only secondary compared to those that stem from the closure relation. In 

short, the use of a HSDY model under RPA outside its validity conditions makes the 

adjustment parameters not fully reliable, which can lead to misinterpretation of the 

interaction potential and the physical system. Therefore, we recommend caution when 
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analyzing moderate, dense and crowded protein solutions at low ionic strength through this 

approach. 

Finally, to avoid the use of closure relations in adjusting the SAXS data on proteins, we 

proposed a new method using Monte Carlo simulations to model the structure factor and, 

definitively, to fit experimental data. The method proved to be able to fit the experimental 

curves of simple solutions, overcoming the problems mentioned in the previous approach. 

We believe that the use of Monte Carlo simulations will be of great value for the study of 

more complex systems, in particular we are obtaining good results in the adjustment of 

binary mixtures of proteins, which will be the subject of a future publication. 
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Supplementary Material

Form factor of lysozyme
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Figure S1: Form factor (panel A) and coupling function (panel B) of lysozyme cal-
culated with the SASMOL method [1] on the basis of the PDB entry 6LYZ [2]. Blue,
magenta and gold curves refer to values of the relative mass of the water molecules
in the first hydration layer corresponding to 1.00, 1.05 and 0.95, respectively.

Temperature effect at different number densities

The effect of temperature on lysozyme X-ray scattering curves was analyzed for ten
protein concentrations ranging between 0.14-1.4 mM and constant salt concentra-
tion (150 mM NaCl). Figure S2 shows the scattering intensities at three different
temperatures (10, 23 and 37 ◦C), each plot under a given protein concentration.
The solid black line in the graphs represents the form factor of the crystallographic
structure 6LYZ (PDB), calculated by GENFIT. In most cases there is a clear in-
fluence of temperature on the scattering curves, exception made to the low protein

S1



concentration curves, [LYS]= 0.14-0.19 mM, where a convergence to the form factor
is expected.

As one can observe the scattering intensity increases at low q values with decreas-
ing temperature. Such an effect is more pronounced to high protein concentrations,
inferring that attractive interaction potential between lysozymes becomes predom-
inant at low temperatures and dense regimes. If one considers only the Coulomb
term of the potential, this fact could be partially explained in terms of the Debye’s
length of the system:

λD ∝
√

T/I (S1)

As λD is proportional to the square root of the temperature divided by the ionic
strength, it is clear that the ionic double layer will be smaller at low temperatures
and higher concentration of counterions, due to the increase in lysozyme number
density. Thus, the net charge of proteins is more screened under these conditions,
which leads to a lower repulsion between them, or a greater attraction. But certainly
many-body interactions and correlations between the double layers may also be
playing an important role here. Furthermore, the attractive term of the potential is
also affected by temperature and protein number density, but in ways that have yet
to be elucidated.

Temperature-dependent lysozyme concentration effect

Three temperatures (10, 23 and 37 ◦C) at constant salt concentration, 150 mM
NaCl, were analysed. At each temperature, the lysozyme concentration assumed
ten different values: 0.14, 0.19, 0.34, 0.54, 0.68, 0.82, 1.02, 1.17, 1.22 and 1.36 mM,
which corresponds to a variation of 2-20 mg/ml. All solutions were prepared in 10
mM PBS buffer and pH 7.4.

A protein number density effect could already be observed in Figure S2, but we
plotted those curves again by grouping them according to temperature to facilitate
visualization, see Figure S3. In general, we observed an increase of the scattering

intensity in the region of q < 0.1 Å
−1

as the concentration increases. This effect,
again, is more significant the lower the temperature is. At 10 ◦C, for example, we can
see a clear separation between the curves, which reduces significantly at 23 ◦C, until
it almost disappears or collapses into a single curve at 37 ◦C. Thus, protein-protein
interactions - or, the spatial correlations between lysozymes - seem stronger at low
temperatures, while at 37 ◦C the solutions come closer to a randomly distributed
system.
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The adjustment of the experimental curves was performed using the HSDY/RPA
procedure, with the difference that, for the same temperature and salt conditions,
the ten curves with different concentrations were adjusted simultaneously. In ad-
dition, we let concentrations vary within a small range of 0.5 mg/ml to take into
account possible systematic errors in sample preparation. The result was quite sat-
isfactory, see Figure S4, within this range of concentrations and temperatures. As
we have already noticed, the DLVO-like potential, together with the RPA closure
relation, works well for lysozyme solutions with high electrostatic screening, which
is the case here (150 mM NaCl). The first maximum of the S(q) functions is always
greater than unity, indicating a predominantly attractive effective potential. In
general, the peaks and valleys of these functions become more intense as the concen-
tration increases, reflecting a greater protein-protein correlation, and they decrease
as the temperature increases and the system tends to become more disordered. No
horizontal displacement of the peaks and valleys was verified.

The fitted parameters are found in Table S1. Within the concentration and tem-
perature ranges considered here, we found that the charge Z, the diameter σ and
the attractive well width D remained virtually unchanged. The main difference is
in the depth J, which increases (that is, becomes more attractive) as temperature
gets lower: from 6.5 units of kbT at 37 ◦C to 7.8 kbT at 10 ◦C. Winter et al.[3] also
observed this tendency of J due to the decrease in temperature.

In this study of Winter et al.[3], which used the same DLVO-like model used here,
but with the MSA closure relation, the authors also showed that the J parameter
can also vary with protein number density. For solutions between 5-20 wt% (with
25 mM Bis-Tris buffer, pH 7 and 25 ◦C) and for [NaCl] = 50 and 100 mM, they
reported that J undergoes a slight decrease with increasing protein concentration,
but practically does not vary in salt free solutions. However, we did not verify such
an effect under the current conditions. Perhaps the range of lysozyme concentrations
we studied here (2-20 mg/ml, or approximately 0.2-2 wt %) is too small to notice
any change of this type in J . What we observed is that, although variations in
lysozyme concentration can significantly alter the X-ray scattering curves (at least
at 10 and 23 ◦C), almost no change is produced on the interaction potentials and
radial distribution functions (see Figure S5), and hence on the mean force potential.

Compared to the adjustments from the first section of the main article, made only
with the highest concentration of lysozyme (1.36 mM) and salt (150 mM), the fitted
parameters obtained now resulted slightly different. Such differences are possibly
due to multiple local minima present in the global fitting minimization process and
are within the SAXS technical resolution.

Figure S5 shows the potential energies and the radial distributions. Notably, almost
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T (◦C) J (kbT) D (Å) Z (e) σ(Å)

10 7.8 4.5 7.3 30.0
23 7.4 4.5 7.3 30.5
37 6.5 4.5 7.3 30.6

Table S1: Fitted parameters for ten lysozyme concentrations between 2-20 mg/ml,
[NaCl] = 150 mM and pH = 7.4. The uncertainties affect the last significant digit
in each parameter value.

no difference is perceived between the curves at the various concentrations and
temperatures analyzed. Regarding energy, there is a slight tendency to increase the
attraction at lower temperatures, as noted earlier when we discussed the structure
factors. Regarding the functions g(r) we see a slight increase in the main peak at low
temperatures, indicating an increase in the relative protein concentration, n(r)/n,
around a given protein. Both the potential and protein number density correlations
are short-range, about a diameter and a half. Compared to the previously adjusted
functions (figure 3 of the article), they have a very similar behavior at the same
conditions.

It is worth noting that, for systems with low volumetric fraction η, the MSA (Mean
Spherical Approximation) closure relation predicts that:

g(r) ≈ 1 + c(r) = 1− βU(r) , r > σ (S2)

thus, the pair potential and the radial distribution function are the inverse of each
other plus one unit, which can be verified visually in figure S5. The volumetric
fractions of our lysozyme solutions are between η = 0.009 − 0.096, values that are
relatively low here due to the small size of these proteins. Equation S2 also predicts
negative values of g(r) when βU(r) > 1. In fact, this was exactly what we observed
in the case of salt free solutions: the maximum of the potential barrier exceeded
unity and the corresponding radial distribution assumed negative values. Thus, it
seems to us that η is also an important parameter, among others, to be monitored
when we intend to apply a consistent interaction model to SAXS data.
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Figure S2: Lysozyme scattering curves at various concentrations between 0.14-1.4
mM (2-20 mg/ml), at three different temperatures (10, 23 and 37 ◦C) and NaCl
concentration fixed at 150 mM.
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Figure S3: Effect of concentration on lysozyme scattering at T = 10, 23 and 37 ◦C
and 150 mM NaCl. Plots are in linear-log scale. The black curve represents the
form factor of the lysozyme crystallographic structure 6LYZ (PDB).
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Figure S4: Left column: Global fits of lysozyme solutions using GENFIT, with a
DLVO-like potential and the RPA approximation. Right column: respective struc-
ture factors. On the horizontal axis, the scattering angle q is multiplied by the
adjusted lysozyme diameter (to be in dimensionless units).
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Figure S5: Left: Fitted DLVO-like effective potential. Right: lysozyme-lysozyme
radial distribution functions derived from the fits. Distances are in dimensionless
units, normalized by the protein diameter.
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