Extra virgin olive oil (EVOO) was gelled with 10% monoglycerides, (MG), rice wax (RW), gamma-oryzanol, and beta-sitosterol (PS), or ethylcellulose (EC). The oleogel structure and the stability of bioactive compounds were investigated during storage up to 120 days at 20, 30, and 40 degrees C.All samples were self-standing but presented different structures. PS produced the firmest gel, whereas EC caused the lowest firmness and rheological values. Structural properties did not change during storage, except for EC oleogel.Structuring triggered a depletion in phenolic content and alpha-tocopherol, which was more pronounced when a higher temperature was required for oleogel preparation (MG similar to RW < PS < EC). However, during storage phenolics and alpha-tocopherol decreased following zero-order kinetics with a higher susceptibility in unstructured oil, suggesting in all cases a protective effect of the gel network.

Oleogelation of extra virgin olive oil by different oleogelators affects the physical properties and the stability of bioactive compounds / Alongi, Marilisa; Lucci, Paolo; Clodoveo, Maria Lisa; Schena, Francesco Paolo; Calligaris, Sonia. - In: FOOD CHEMISTRY. - ISSN 0308-8146. - 368:(2022). [10.1016/j.foodchem.2021.130779]

Oleogelation of extra virgin olive oil by different oleogelators affects the physical properties and the stability of bioactive compounds

Lucci, Paolo;
2022-01-01

Abstract

Extra virgin olive oil (EVOO) was gelled with 10% monoglycerides, (MG), rice wax (RW), gamma-oryzanol, and beta-sitosterol (PS), or ethylcellulose (EC). The oleogel structure and the stability of bioactive compounds were investigated during storage up to 120 days at 20, 30, and 40 degrees C.All samples were self-standing but presented different structures. PS produced the firmest gel, whereas EC caused the lowest firmness and rheological values. Structural properties did not change during storage, except for EC oleogel.Structuring triggered a depletion in phenolic content and alpha-tocopherol, which was more pronounced when a higher temperature was required for oleogel preparation (MG similar to RW < PS < EC). However, during storage phenolics and alpha-tocopherol decreased following zero-order kinetics with a higher susceptibility in unstructured oil, suggesting in all cases a protective effect of the gel network.
2022
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0308814621017854-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 3.59 MB
Formato Adobe PDF
3.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/315583
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 33
social impact