Of all the different renewable energy sources, solar thermal energy, is one of the most promising alternatives to the consumption of highly polluting fossil fuels. Among its applications, solar cooking emerges as one of the most attractive ways to harness this type of energy. In the study presented, different types of solar cookers with and without a storage system were designed and tested: a high-efficiency solar box cooker (SBC), a concentrator cooker (CC), two prototype panel cookers (PSCs), and a medium-efficiency solar box cooker (SBC) equipped with thermal storage based on phase change materials (PCMs). Regarding the latter, an extensive experimental campaign was carried out to characterize the selected PCMs both thermophysically and in terms of their thermal stability. From the analysis, sugar alcohols (SAs) were found to be suitable for use as PCMs in solar furnaces for applications in the low to medium temperature ranges (80-250 °C). The high-efficiency SBC had a concentration ratio of 11.57. It consisted of a cooking chamber, a glazed top cover, and a double row of reflective mirrors. The prototype allowed both azimuthal and zenithal manual alignment. Tests without load were conducted to identify the maximum temperature that the cooker could reach, and load tests were conducted using water and peanut oil in various configurations: with one or two aluminum pots, painted black or unpainted. The cooker was able to bring 1 kg of water to the boiling point in about 11 minutes and get the peanut oil to a temperature of 220 °C in about 41 minutes. The CC, called Heliac, had a concentration ratio of 40.97. It consisted mainly of a wooden lattice structure to which two wooden structures of different sizes were attached: one containing the larger Fresnel lens, and a smaller one containing the reflective surface. Tests with load were carried out using water and silicone oil as test fluids. The cooker was able to make 3 kg of water reach 90 °C in about half an hour and bring 3 kg of silicone oil to 170 °C in less than 1 hour. The two PSCs made are the Newton and the Kimono panel solar cookers, respectively. The former consisted mainly of a prism-shaped glazed cooking chamber and two systems of reflective surfaces, a larger primary one and a smaller secondary one.Bby changing the inclination of the two reflective surfaces, the device, was able to vary its geometry. No-load tests and tests with load were carried out, using water and glycerin as test fluids. During the experimental campaign, two identical prototypes, one shielded from wind and the other not, were tested to assess how much this environmental parameter affects the final performance. Both devices were able to reach a stagnation temperature of 137 °C. The wind-shielded device was able to bring 2 kg of water to a temperature of 90 °C in about 2 hours and 2 kg of glycerin to a temperature of 110 °C in about 3 hours. These times were slightly longer in the case of the device tested without wind shielding. The Kimono panel solar cooker consisted of acrylic panels connected together and covered with a reflective film. The prototype was tested in parallel with three other panel devices during three different times of the year by conducting no-load and water-load tests. The results showed that the Kimono panel solar cooker is among the best performing prototypes in all the three test periods, with a water heating time to boiling point of 1.74 hours. The medium efficiency SBC had a concentration ratio of 4.08. It was mainly composed of a galvanized steel cooking chamber, a glass cover, and a system of 8 mirrors of two different shapes. Tests without load and tests with load were carried out using water and silicone oil as test fluids. In this case, the contribution to the overall system of the inclusion within the cooking chamber of a storage system based on phase change materials would make was also evaluated. The PCMs selected were erythritol and xylitol. The results showed that the cooling times of 1.5 kg of silicone oil in the chosen temperature range 125-100 °C increased by 350% when tested with the erythritol-based TES compared to when tested alone. In contrast, the cooling time of the same mass of silicone oil in the fluid temperature range 110-80 °C increased by 346% when tested with the xylitol-based TES equipped with a hand stirrer to stimulate nucleation of the material compared with when tested alone. Experimental data from the latter device were used to validate the mathematical model developed specifically to simulate its thermodynamic performance. The model results show a very good fit with reality, managing to simulate the temperature of water and silicone oil in the heating phase of the selected tests with an average deviation from experimental data of 3% and 8%, respectively.
L’energia solare termica, tra le fonti rinnovabili, rappresenta una tra le più promettenti alternative al consumo di fonti fossili altamente inquinanti. Tra le sue applicazioni, la cottura solare risulta uno dei modi più attrattivi per sfruttare questo tipo di energia. Nel presente studio sono state progettate e testate differenti tipologie di forni solari con e senza sistema di accumulo: un forno solare a scatola (SBC) ad alta efficienza, un forno a concentrazione (CC), due prototipi a pannelli (PSC) e un forno a scatola (SBC) a media efficienza dotato di accumulo termico a base di materiali a cambiamento di fase (PCM). Per quanto riguarda questi ultimi, una estensiva campagna sperimentale è stata effettuata per caratterizzare i PCM selezionati dal punto di vista termofisico e della loro stabilità termica. Dall’analisi, i polialcoli sono risultati adatti all’impiego come PCM nei forni solari per applicazioni nei range di temperatura medio-bassa (80-250 °C). Il SBC ad alta efficienza ha un rapporto di concentrazione di 11.57. È costituito da una camera di cottura, una copertura superiore vetrata e da una doppia fila di specchi riflettenti. Il prototipo consente un allineamento solare manuale sia azimutale che zenitale. Sono state svolte prove a vuoto per identificare la massima temperatura raggiungibile dal forno e prove a carico utilizzando acqua e olio di arachide in varie configurazioni: utilizzando una o due pentole di alluminio, verniciate o meno di nero. Il forno è stato in grado di portare ad ebollizione 1 kg di acqua in circa 11 minuti e a far raggiungere all’olio di arachide la temperatura di 220 °C in circa 41 minuti. Il CC, chiamato Heliac, ha un rapporto di concentrazione di 40.97. È costituito principalmente da una struttura reticolare lignea a cui sono fissate due strutture di legno di dimensioni differenti: una contenente la lente di Fresnel di dimensioni maggiori, e l’altra più piccola contenente la superficie riflettente. Sono state svolte prove a carico utilizzando acqua e olio siliconico come fluidi di prova. Il forno è stato in grado di far raggiungere i 90 °C a 3 kg di acqua in circa mezz’ora e a portare 3 kg di olio siliconico a 170 °C in meno di 1 ora. I due PSC realizzati sono rispettivamente il Newton e il Kimono. Il primo è costituito principalmente da una camera di cottura vetrata a forma di prisma e da due sistemi di superfici riflettenti, quella primaria di dimensioni maggiori e quella secondaria di dimensioni ridotte. Il dispositivo, cambiando l’inclinazione delle due superfici riflettenti è in grado di variare la propria geometria. Sono state svolte prove a vuoto e a carico, utilizzando acqua e glicerina come fluidi di prova. Durante la campagna sperimentale sono stati testati due identici prototipi, uno schermato dal vento e l’altro no, per valutare quanto questo parametro ambientale va ad influenzare le performance finali. Entrambi i dispositivi sono stati in grado di raggiungere una temperatura di stagnazione di 137 °C. Il dispositivo schermato dal vento è riuscito a portare 2 kg di acqua ad una temperatura di 90 °C in circa 2 ore e 2 kg di glicerina ad una temperatura di 110 °C in circa 3 ore. Questi tempi sono risultati leggermente maggiori nel caso di dispositivo testato senza schermatura dal vento. Il Kimono è costituito da pannelli in acrilico collegati tra di loro e ricoperti da una pellicola riflettente. Il prototipo è stato testato in parallelo ad altri tre dispositivi a pannelli durante tre periodi differenti dell’anno, effettuando prove a vuoto e a carico con acqua. I risultati hanno mostrato che il Kimono è tra i prototipi con migliori prestazioni in tutti e tre i periodi di prova, con un tempo di riscaldamento dell’acqua fino al punto di ebollizione di 1.74 ore. Il SBC a media efficienza ha un rapporto di concentrazione di 4.08. È principalmente composto da una camera di cottura in acciaio zincato, una copertura vetrata e un sistema di 8 specchi di due forme diverse. Sono state effettuate prove a vuoto e a carico utilizzando acqua e olio siliconico come fluidi di prova. In questo caso è stato anche valutato il contributo che l’inserimento all’interno della camera di cottura di un sistema di accumulo basato su materiali a cambiamento di fase andava ad apportare all’intero sistema. I PCM selezionati erano eritritolo e xilitolo. I risultati hanno mostrato che i tempi di raffreddamento di 1.5 kg di olio siliconico nel range di temperatura scelto 125-100 °C è aumentato del 350% quando testato con il TES a base di eritritolo rispetto a quando testato da solo. Il tempo di raffreddamento della stessa massa di olio siliconico nel range di temperatura del fluido 110-80 °C è invece aumentato del 346% quanto testato con il TES a base di xilitolo dotato di agitatore manuale per stimolare la nucleazione del materiale rispetto a quando testato da solo. I dati sperimentali di quest’ultimo dispositivo sono stati utilizzati per validare il modello matematico sviluppato appositamente per simularne le performance termodinamiche. I risultati del modello mostrano un’ottima aderenza con la realtà, riuscendo a simulare la temperatura di acqua e olio siliconico nella fase di riscaldamento dei test selezionati con uno scostamento medio rispetto ai dati sperimentali del 3% e 8%, rispettivamente.
Experimental Characterization and Numerical Modelling of Solar Cooker Prototypes with Thermal Energy Storage / Aquilanti, Alessia. - (2023 Jun 14).
Experimental Characterization and Numerical Modelling of Solar Cooker Prototypes with Thermal Energy Storage
AQUILANTI, ALESSIA
2023-06-14
Abstract
Of all the different renewable energy sources, solar thermal energy, is one of the most promising alternatives to the consumption of highly polluting fossil fuels. Among its applications, solar cooking emerges as one of the most attractive ways to harness this type of energy. In the study presented, different types of solar cookers with and without a storage system were designed and tested: a high-efficiency solar box cooker (SBC), a concentrator cooker (CC), two prototype panel cookers (PSCs), and a medium-efficiency solar box cooker (SBC) equipped with thermal storage based on phase change materials (PCMs). Regarding the latter, an extensive experimental campaign was carried out to characterize the selected PCMs both thermophysically and in terms of their thermal stability. From the analysis, sugar alcohols (SAs) were found to be suitable for use as PCMs in solar furnaces for applications in the low to medium temperature ranges (80-250 °C). The high-efficiency SBC had a concentration ratio of 11.57. It consisted of a cooking chamber, a glazed top cover, and a double row of reflective mirrors. The prototype allowed both azimuthal and zenithal manual alignment. Tests without load were conducted to identify the maximum temperature that the cooker could reach, and load tests were conducted using water and peanut oil in various configurations: with one or two aluminum pots, painted black or unpainted. The cooker was able to bring 1 kg of water to the boiling point in about 11 minutes and get the peanut oil to a temperature of 220 °C in about 41 minutes. The CC, called Heliac, had a concentration ratio of 40.97. It consisted mainly of a wooden lattice structure to which two wooden structures of different sizes were attached: one containing the larger Fresnel lens, and a smaller one containing the reflective surface. Tests with load were carried out using water and silicone oil as test fluids. The cooker was able to make 3 kg of water reach 90 °C in about half an hour and bring 3 kg of silicone oil to 170 °C in less than 1 hour. The two PSCs made are the Newton and the Kimono panel solar cookers, respectively. The former consisted mainly of a prism-shaped glazed cooking chamber and two systems of reflective surfaces, a larger primary one and a smaller secondary one.Bby changing the inclination of the two reflective surfaces, the device, was able to vary its geometry. No-load tests and tests with load were carried out, using water and glycerin as test fluids. During the experimental campaign, two identical prototypes, one shielded from wind and the other not, were tested to assess how much this environmental parameter affects the final performance. Both devices were able to reach a stagnation temperature of 137 °C. The wind-shielded device was able to bring 2 kg of water to a temperature of 90 °C in about 2 hours and 2 kg of glycerin to a temperature of 110 °C in about 3 hours. These times were slightly longer in the case of the device tested without wind shielding. The Kimono panel solar cooker consisted of acrylic panels connected together and covered with a reflective film. The prototype was tested in parallel with three other panel devices during three different times of the year by conducting no-load and water-load tests. The results showed that the Kimono panel solar cooker is among the best performing prototypes in all the three test periods, with a water heating time to boiling point of 1.74 hours. The medium efficiency SBC had a concentration ratio of 4.08. It was mainly composed of a galvanized steel cooking chamber, a glass cover, and a system of 8 mirrors of two different shapes. Tests without load and tests with load were carried out using water and silicone oil as test fluids. In this case, the contribution to the overall system of the inclusion within the cooking chamber of a storage system based on phase change materials would make was also evaluated. The PCMs selected were erythritol and xylitol. The results showed that the cooling times of 1.5 kg of silicone oil in the chosen temperature range 125-100 °C increased by 350% when tested with the erythritol-based TES compared to when tested alone. In contrast, the cooling time of the same mass of silicone oil in the fluid temperature range 110-80 °C increased by 346% when tested with the xylitol-based TES equipped with a hand stirrer to stimulate nucleation of the material compared with when tested alone. Experimental data from the latter device were used to validate the mathematical model developed specifically to simulate its thermodynamic performance. The model results show a very good fit with reality, managing to simulate the temperature of water and silicone oil in the heating phase of the selected tests with an average deviation from experimental data of 3% and 8%, respectively.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Aquilanti.pdf
accesso aperto
Descrizione: Tesi_Aquilanti
Tipologia:
Tesi di dottorato
Licenza d'uso:
Creative commons
Dimensione
46.7 MB
Formato
Adobe PDF
|
46.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.