In this paper we consider the Cauchy problem for the semilinear damped wave equation utt-Δu+ut=h(u),u(0,x)=ϕ(x),ut(0,x)=ψ(x),where h(s)=|s|1+2nμ(|s|). Here n is the space dimension and μ is a modulus of continuity. Our goal is to obtain sharp conditions on μ to obtain a threshold between global (in time) existence of small data solutions (stability of the zero solution) and blow-up behavior even of small data solutions

Critical regularity of nonlinearities in semilinear classical damped wave equations / Ebert, Mr; Girardi, G; Reissig, M. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 378:3-4(2020), pp. 1311-1326. [10.1007/s00208-019-01921-5]

Critical regularity of nonlinearities in semilinear classical damped wave equations

Girardi, G;
2020-01-01

Abstract

In this paper we consider the Cauchy problem for the semilinear damped wave equation utt-Δu+ut=h(u),u(0,x)=ϕ(x),ut(0,x)=ψ(x),where h(s)=|s|1+2nμ(|s|). Here n is the space dimension and μ is a modulus of continuity. Our goal is to obtain sharp conditions on μ to obtain a threshold between global (in time) existence of small data solutions (stability of the zero solution) and blow-up behavior even of small data solutions
2020
File in questo prodotto:
File Dimensione Formato  
Ebert_et_al-2020-Mathematische_Annalen.pdf

Solo gestori archivio

Descrizione: paper
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 279.78 kB
Formato Adobe PDF
279.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
EGR2019finalversion.pdf

Open Access dal 19/10/2020

Descrizione: Post-print
Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Tutti i diritti riservati
Dimensione 486.75 kB
Formato Adobe PDF
486.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/314978
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact