In this paperweconsider theCauchy problem for the semilinear dampedwave equationutt -.u + ut = h(u), u(0, x) = f(x), ut (0, x) =.(x),where h(s) = |s|1+ 2 n mu(|s|). Here n is the space dimension and mu is a modulus of continuity. Our goal is to obtain sharp conditions on mu to obtain a threshold between global (in time) existence of small data solutions (stability of the zero solution) and blow-up behavior even of small data solutions.

Critical regularity of nonlinearities in semilinear classical damped wave equations / Ebert, Mr; Girardi, G; Reissig, M. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 378:3-4(2020), pp. 1311-1326. [10.1007/s00208-019-01921-5]

Critical regularity of nonlinearities in semilinear classical damped wave equations

Girardi, G;
2020-01-01

Abstract

In this paperweconsider theCauchy problem for the semilinear dampedwave equationutt -.u + ut = h(u), u(0, x) = f(x), ut (0, x) =.(x),where h(s) = |s|1+ 2 n mu(|s|). Here n is the space dimension and mu is a modulus of continuity. Our goal is to obtain sharp conditions on mu to obtain a threshold between global (in time) existence of small data solutions (stability of the zero solution) and blow-up behavior even of small data solutions.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/314978
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact