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CRITICAL REGULARITY OF NONLINEARITIES IN SEMILINEAR CLASSICAL
DAMPED WAVE EQUATIONS

M. R. EBERT, G. GIRARDI, AND M. REISSIG

Abstract. In this paper we consider the Cauchy problem for the semilinear damped wave equation

utt ´ ∆u ` ut “ hpuq, up0, xq “ ϕpxq, utp0, xq “ ψpxq,

where hpsq “ |s|
1` 2

n µp|s|q. Here n is the space dimension and µ is a modulus of continuity. Our goal
is to obtain sharp conditions on µ to obtain a threshold between global (in time) existence of small data
solutions (stability of the zero solution) and blow-up behavior even of small data solutions.

1. Introduction

In [12], the authors proved the global existence of small data energy solutions for the semilinear damped
wave equation

utt ´ ∆u` ut “ |u|p, up0, xq “ ϕpxq, utp0, xq “ ψpxq, (1)

in the supercritical range p ą 1 ` 2
n , by assuming compactly supported small data from the energy space.

Under additional regularity the compact support assumption on the data can be removed. By assuming
data in Sobolev spaces with additional regularity L1pRnq, a global (in time) existence result was proved
in space dimensions n “ 1, 2 in [5], by using energy methods, and in space dimension n ď 5 in [9], by
using Lr ´ Lq estimates, 1 ď r ď q ď 8. Nonexistence of general global (in time) small data solutions is
proved in [12] for 1 ă p ă 1 ` 2

n and in [13] for p “ 1 ` 2
n . The exponent 1 ` 2

n is well known as Fujita
exponent and it is the critical power for the following semilinear parabolic Cauchy problem (see [2]):

vt ´ △v “ vp, vp0, xq “ v0pxq ě 0. (2)

If one removes the assumption that the initial data are in L1pRnq and we only assume that they are in
the energy space, then the critical exponent is modified to 1 ` 4

n or to 1 ` 2m
n under additional regularity

LmpRnq, with m P r1, 2s. For the classical damped wave equation, this phenomenon has been investigated
in [4].

The diffusion phenomenon between linear heat and linear classical damped wave models (see [3], [7], [9]
and [10]) explains the parabolic character of classical damped wave models with power nonlinearities from
the point of decay estimates of solutions.
In the mathematical literature (see for instance [1]) the situation is in general described as follows: We
have a semilinear Cauchy problem

LpBt, Bx, t, xqu “ |u|p, up0, xq “ ϕpxq, utp0, xq “ ψpxq,

where L is a linear partial differential operator. Then the authors would like to find a critical exponent pcrit
in the scale t|u|pupą0, a threshold between two different qualitative behaviors of solutions. As examples
see the models (1) or (2).

The main concern of this paper is to show by the aid of the model ( 1) that the restriction to the scale
t|u|pupą0 is too rough to verify the critical non-linearity or the critical regularity of the non-linear right-hand
side.

For this reason we turn to the Cauchy problem for the semilinear damped wave equation

utt ´ ∆u` ut “ hpuq, up0, xq “ ϕpxq, utp0, xq “ ψpxq, (3)
1



2 M. R. EBERT, G. GIRARDI, AND M. REISSIG

in r0,8q ˆ Rn, where hpsq “ |s|1` 2
nµp|s|q. Here µ “ µpsq, s P r0,8q, is a modulus of continuity, which

provides an additional regularity of the right-hand side h “ hpsq for s P r0,8q.

Definition 1. A function µ : r0,8q Ñ r0,8q is called a modulus of continuity, if µ is a continuous,
concave and increasing function satisfying µp0q “ 0.

Our goal is to discuss the influence of the function µ on the global (in time) existence of small data
Sobolev solutions or on statements for blow-up of Sobolev solutions to (3). In the following result, we
assume that the modulus of continuity µ given in (3) satisfies the following two conditions:

sk|µpkqpsq| ď Cµpsq for 1 ď k ď n, s P p0, s0s, and
ż C0

0

µpsq

s
ds ă 8, (4)

where C is a sufficiently large positive constant, s0 and C0 are sufficiently small positive constants.

Remark 2. In the further considerations we need a suitable modulus of continuity satisfying the conditions
( 4) on a small interval r0, s0s only. Nevertheless we can assume that the modulus of continuity can be
continued to the real line in such a way that the properties from Definition 1 are satisfied.

Theorem 3. Let n “ 1, 2 and

pϕ, ψq P A :“
`

H1`t n
2 upRnq X L1pRnq

˘

ˆ
`

Ht n
2 upRnq X L1pRnq

˘

,

where we denote by t¨u the floor function. Assume that the modulus of continuity µ satisfies the condition
(4). Then, the following statement holds for a sufficiently small ε0 ą 0: if

}pϕ, ψq}A ď ε for ε ď ε0,

then there exists a unique globally (in time) Sobolev solution u to (3) belonging to the function space

C
`

r0,8q, H1pRnq X L8pRnq
˘

,

such that the following decay estimates are satisfied:

}upt, ¨q}L8 ď Cp1 ` tq´ n
2 }pϕ, ψq}A,

}∇k
xupt, ¨q}L2 ď Cp1 ` tq´

n`2k
4 }pϕ, ψq}A, k “ 0, 1.

Remark 4. The key tool to prove Theorem 3 is to apply estimates for solutions to the parameter-dependent
Cauchy problem for the linear classical damped wave equation (Lemma 7). By using more general Lr ´Lq

estimates, 1 ď r ď q ď 8, derived in [9] for the linear damped wave equation, one can also obtain a global
(in time) existence result for higher dimensions n, but this aim is beyond the scope of this paper.

Example 1. The hypotheses of Theorem 3 hold for the following functions µ (see also Remark 2) on a
small interval r0, s0s:

(1) µpsq “ sp, p P p0, 1s;
(2) µpsq “ plogp1 ` sqqp, p P p0, 1s;

(3) µp0q “ 0 and µpsq “

´

log 1
s

¯´p

, p ą 1;

(4) µp0q “ 0 and µpsq “

´

log 1
s

¯´1´

log log 1
s

¯´1

¨ ¨ ¨

´

logk 1
s

¯´p

, p ą 1, k P N.

The next result shows that the integral condition on the function µ in (4) can not be relaxed.

Theorem 5. Consider for n ě 1 the Cauchy problem
#

utt ´ ∆u` ut “ |u|1` 2
nµp|u|q, pt, xq P p0,8q ˆ Rn,

pup0, xq, utp0, xqq “ p0, gpxqq, x P Rn.
(5)

Here µ “ µpsq, s P r0,8q is a modulus of continuity which satisfies the condition
ż C0

0

µpsq

s
ds “ 8, (6)
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where C0 is a sufficiently small positive constant. Moreover, we assume that the function h : s P R Ñ

hpsq :“ s1` 2
nµpsq is convex on R. Suppose that the data

g P A :“ Hr n
2 spRnq X L1pRnq,

such that
ż

Rn

gpxq dx ą 0.

Then, in general we have no global (in time) existence of Sobolev solutions even if the data are supposed
to be very small in the following sense:

}g}A ď ε for ε ď ε0.

To prove Theorem 5 we will follow the approach used in [6] in which the authors get a sharp upper bound
for the lifespan of solutions to some critical semilinear parabolic, dispersive and hyperbolic equations, by
using a test function method.

Example 2. The hypotheses of Theorem 5 hold for the following functions µ (see also Remark 2) on a
small interval r0, s0s:

(1) µp0q “ 0 and µpsq “

´

log 1
s

¯´p

, 0 ă p ď 1;

(2) µp0q “ 0 and µpsq “

´

log 1
s

¯´1´

log log 1
s

¯´1

¨ ¨ ¨

´

logk 1
s

¯´p

, p P p0, 1s, k P N.

Remark 6. Let us discuss the assumption in Theorem 5 that the function

h : s P R Ñ hpsq :“ s1` 2
nµpsq is convex on R.

In the case of smooth µ, in a small right-sided neighborhood of s “ 0, this hypothesis can be replaced by
the condition

skµpkqpsq “ opµpsqq for s Ñ `0, k “ 1, 2.

Indeed, it is sufficient to verify that on a small interval p0, s0s

h
2

psq “ s
2
n ´1

´ 2

n

´

1 `
2

n

¯

µpsq ` 2
´

1 `
2

n

¯

sµ1psq ` s2µ
2

psq
¯

ě 0.

This condition is satisfied in our examples. Outside this interval we can choose a convex continuation of
h.

In the following we use f À g for nonnegative f and g if there exists a constant C with f ď Cg. We use
f „ g if f ď C1g and g ď C2f with suitable constants C1 and C2.

2. Global existence of small data solutions

In the proof of Theorem 3 we are going to use the following estimates for Sobolev solutions to the
parameter-dependent Cauchy problem for the linear classical damped wave equation.

Lemma 7 (Lemma 1 in [8]). Let

pϕ, ψq P A :“
`

H1`t n
2 upRnq X L1pRnq

˘

ˆ
`

Ht n
2 upRnq X L1pRnq

˘

.

Then, the Sobolev solutions to the Cauchy problem

utt ´ ∆u` ut “ 0, ups, xq “ ϕspxq, utps, xq “ ψspxq, (7)

satisfy the following estimates for t ě 0:

}upt, ¨q}L8 ď Cp1 ` t´ sq´ n
2

`

}ϕs}L1 ` }ϕs}
H1`t n

2
u ` }ψs}L1 ` }ψs}

Ht n
2

u

˘

,

and for k “ 0, 1, 1 ` tn2 u

}∇k
xupt, ¨q}L2 ď Cp1 ` t´ sq´

n`2k
4 p}ϕs}L1 ` }ϕs}Hk ` }ψs}L1 ` }ψs}Hk´1q .
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Theorem 3 . The space of Sobolev solutions is Xptq “ C
`

r0, ts, H1pRnq X L8pRnq
˘

. Taking into consid-
eration the estimates of Lemma 7 we define on Xptq the norm

}u}Xptq “ sup
τPr0,ts

!

1
ÿ

k“0

p1 ` τq
n`2k

4 }∇kupτ, ¨q}L2 ` p1 ` τq
n
2 }upτ, ¨q}L8

)

.

For arbitrarily given data pϕ, ψq P A we introduce the operator

N : u P Xptq Ñ ulin `

ż t

0

Φpt, s, ¨q ˚pxq hpups, ¨qqpxq ds

in Xptq, where by ulin we denote the solution to the linear parameter-dependent Cauchy problem (7) with
initial data pϕ, ψq. By

Φpt, s, ¨q ˚pxq hpups, ¨qqpxq

we denote the Sobolev solution to the Cauchy problem (7) with ϕs ” 0 and ψs “ hpups, ¨qq. We will prove
that

}Nu}Xptq ď C0}pϕ, ψq}A ` C̃ε0}u}
1` 2

n

Xptq , (8)

}Nu´Nv}Xptq ď Cε0}u´ v}Xptq

`

}u}
2
n

Xptq ` }v}
2
n

Xptq

˘

, (9)

where Cε0 and C̃ε0 tend to 0 for ε0 to 0.
First of all we have after applying Lemma 7 for all t ą 0 the estimate

}ulin}Xptq ď C0}pϕ, ψq}A, (10)

where the constant C0 is independent of t. Consequently, it remains to estimate

Gpuqpt, xq :“

ż t

0

Φpt, s, xq ˚pxq hpups, xqq ds.

For j “ 0, 1 we have

}∇jGpuqpt, ¨q}L2 ď

ż t

0

p1 ` t´ sq´ n
4 ´

j
2 }hpups, ¨qq}L1XL2ds.

It holds
}hpups, ¨qq}L1XL2 ď µp}ups, ¨q}L8 q }|ups, ¨q|1` 2

n }L1XL2 .

Thus, by using that
}ups, ¨q}L8 ď p1 ` sq´ n

2 }u}Xpsq

and the monotonicity of µ “ µpsq we get the following estimate:

µp}ups, ¨q}L8 q ď µ
`

p1 ` sq´ n
2 }u}Xpsq

˘

. (11)

Let us assume }u}Xptq ď ε0 for all t ą 0 and some ε0 ą 0 sufficiently small. Then, since the norm in Xptq
is increasing with respect to t, we can estimate the right-hand side of (11) by

µ
`

ε0p1 ` sq´ n
2

˘

.

Moreover, to estimate }|ups, ¨q|1` 2
n }L1XL2 we may apply the Gagliardo-Nirenberg inequality and obtain

}ups, ¨q}
1` 2

n

L1` 2
n

ď C}∇ups, ¨q}
1´ n

2

L2 }ups, ¨q}
2
n ` n

2

L2 ď Cp1 ` sq´1}u}
1` 2

n

Xpsq
, (12)

and
}ups, ¨q}

1` 2
n

L2` 4
n

ď C}∇ups, ¨q}L2}ups, ¨q}
2
n

L2 ď Cp1 ` sq´1´ n
4 }u}

1` 2
n

Xpsq
. (13)

Thus, we may conclude

}∇jGpuqpt, ¨q}L2 ď }u}
1` 2

n

Xptq

ż t

0

p1 ` t´ sq´ n
4 ´

j
2 p1 ` sq´1µ

`

ε0p1 ` sq´ n
2

˘

ds.
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To estimate }Gpuqpt, ¨q}L8 , the required regularity to the data increases with n, so we split the analysis
for n “ 1 and n “ 2. For n “ 1 we may estimate

}Gpuqpt, ¨q}L8 ď

ż t

0

p1 ` t´ sq´ 1
2 }hpups, ¨qq}L1XL2ds,

and proceed as before to derive

}Gpuqpt, ¨q}L8 ď }u}3Xptq

ż t

0

p1 ` t´ sq´ 1
2 p1 ` sq´1µ

`

ε0p1 ` sq´ 1
2

˘

ds.

For n “ 2, applying Lemma 7 we may estimate

}Gpuqpt, ¨q}L8 ď

ż t

0

p1 ` t´ sq´1}hpups, ¨qq}L1XH1ds.

Now, we have to deal with a new term }∇hpups, ¨qq}L2 . Using (4), we may estimate

|∇hpups, xqq| ď |ups, xq|µp|ups, xq|q|∇ups, xq|

and

}∇hpups, ¨qq}L2 À }ups, ¨q}L8µp}ups, ¨q}L8 q}∇ups, ¨q}L2

À p1 ` sq´2}u}2Xpsqµ
`

p1 ` sq´1}u}Xpsq

˘

.

Therefore

}Gpuqpt, ¨q}L8 ď }u}
1` 2

n

Xptq

ż t

0

p1 ` t´ sq´ n
2 p1 ` sq´1µ

`

ε0p1 ` sq´ n
2

˘

ds, n “ 1, 2.

Now, let α ď 1. On the one hand it holds
ż t

2

0

p1 ` t´ sq´αp1 ` sq´1µ
`

ε0p1 ` sq´ n
2

˘

ds „ p1 ` tq´α

ż t
2

0

p1 ` sq´1µ
`

ε0p1 ` sq´ n
2

˘

ds

by using p1 ` t´ sq „ p1 ` tq on r0, t{2s. On the other hand
ż t

t
2

p1 ` t´ sq´αp1 ` sq´1µ
`

ε0p1 ` sq´ n
2

˘

ds

À p1 ` tq´α

ż t

t
2

p1 ` t´ sq´αp1 ` sq´1`αµ
`

ε0p1 ` sq´ n
2

˘

ds

À p1 ` tq´α

ż t

t
2

p1 ` t´ sq´1µ
`

ε0p1 ` t´ sq´ n
2

˘

ds,

where we used 1 ` s „ 1 ` t and 1 ` s Á 1 ` t´ s on rt{2, ts.
By using the change of variables r “ ε0p1 ` sq´ n

2 , we get
ż `8

0

p1 ` sq´1µ
`

ε0p1 ` sq´ n
2

˘

ds „

ż ε0

0

µprq

r
dr,

that is finite, due to assumption (4). Summarizing, we arrive at

}Nu}Xptq À C0}pϕ, ψq}A ` C̃ε0}u}
1` 2

n

Xptq , (14)

where C̃ε0 tends to 0 for ε0 to 0.
To derive a Lipschitz condition we recall

Gu´Gv “

ż t

0

Φpt, s, xq ˚pxq

´

|u|1` 2
nµp|u|q ´ |v|1` 2

nµp|v|q

¯

ds

“

ż t

0

Φpt, s, xq ˚pxq

´

ż 1

0

pd|u|Hp|u|qqpv ` τpu´ vqqdτ
¯

ps, xqpu´ vqps, xq ds,
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where
H : |u| P R` Ñ Hp|u|q “ |u|1` 2

nµp|u|q.

By using our assumption to µ1 “ µ1psq we get
ˇ

ˇd|u|Hp|u|q
ˇ

ˇ À |u|
2
nµp|u|q.

Here we take into consideration that |u| ď s0 with s0 from (4) for small data solutions. Applying
Minkowski’s integral inequality (maybe Jensen applied to the convex function | ¨ |2{n??), Lemma 7 and
the monotonicity of d|u|Hp|u|q for small |u| gives

}∇j
xpGupt, ¨q ´Gvpt, ¨qq}L2

À

ż t

0

p1 ` t´ sq´ n
4 ´

j
2

›

›

›

´

ż 1

0

µp|v ` τpu´ vq|q|v ` τpu´ vq|
2
n dτ

¯

|u´ v|ps, ¨q
›

›

›

L1XL2
ds

À

ż t

0

ż 1

0

p1 ` t´ sq´ n
4 ´

j
2

›

›

`

|u|
2
n ` |v|

2
n

˘

pu´ vqps, ¨q
›

›

L1XL2}µp|v ` τpu´ vq|q}L8 dτ ds.

By using Hölder’s inequality we get
›

›

`

|ups, ¨q|
2
n ` |vps, ¨q|

2
n

˘

pu´ vqps, ¨q
›

›

L1

À
`

}ups, ¨q}
2
n

L1` 2
n

` }vps, ¨q}
2
n

L1` 2
n

˘

}pu´ vqps, ¨q}
L1` 2

n
,

and
›

›

`

|ups, ¨q|
2
n ` |vps, ¨q|

2
n

˘

pu´ vqps, ¨q
›

›

L2

À
`

}ups, ¨q}
2
n

L2` 4
n

` }vps, ¨q}
2
n

L2` 4
n

˘

}pu´ vqps, ¨q}
L2` 4

n
.

Thus, we can apply Gagliardo-Nirenberg as in (12) and (13) to get
›

›

`

|ups, ¨q|
2
n ` |vps, ¨q|

2
n

˘

pu´ vqps, ¨q
›

›

L1 À p1 ` sq´1
`

}u}
2
n

Xpsq
` }v}

2
n

Xpsq

˘

}u´ v}Xpsq,
›

›

`

|ups, ¨q|
2
n ` |vps, ¨q|

2
n

˘

pu´ vqps, ¨q
›

›

L2 À p1 ` sq´1´ n
4

`

}u}
2
n

Xpsq
` }v}

2
n

Xpsq

˘

}u´ v}Xpsq.

Now we follow the same ideas presented above to conclude

}∇j
xpGupt, ¨q ´Gvpt, ¨qq}L2

À }u´ v}Xptq

`

}u}
2
n

Xptq ` }v}
2
n

Xptq

˘

ż t

0

ż 1

0

p1 ` t´ sq´ n
4 ´

j
2 p1 ` sq´1µp}v ` τpu´ vq}L8 q dτ ds

À }u´ v}Xptq

`

}u}
2
n

Xptq ` }v}
2
n

Xptq

˘

p1 ` tq´ n
4 ´

j
2

ż t

0

ż 1

0

p1 ` sq´1µ
`

ε0p1 ` sq´ n
2

˘

dτ ds

ď C 1
ε0p1 ` tq´ n

4 ´
j
2 }u´ v}Xptq

`

}u}
2
n

Xptq ` }v}
2
n

Xptq

˘

,

where C 1
ε0 tends to 0 for ε0 to 0.

To estimate }Gupt, ¨q ´ Gvpt, ¨q}L8 , we again split the analysis for n “ 1 and n “ 2. For n “ 1 we may
proceed as we did to derive the estimates for }∇j

xpGupt, ¨q ´Gvpt, ¨qq}L2 to conclude

}Gupt, ¨q ´Gvpt, ¨q}L8 ď C 1
ε0p1 ` tq´ 1

2 }u´ v}Xptq

`

}u}2Xptq ` }v}2Xptq

˘

,

where C 1
ε0 tends to 0 for ε0 to 0.

For n “ 2, applying Lemma 7 we may estimate

}Gupt, ¨q ´Gvpt, ¨q}L8

ď

ż t

0

p1 ` t´ sq´1
›

›

›

´

ż 1

0

pd|u|Hp|u|qqpv ` τpu´ vqq dτ
¯

pu´ vqps, ¨q
›

›

›

L1XH1
ds.
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The only new term to be considered is
›

›pd|u|Hp|u|qqpv ` τpu´ vqqps, ¨qpu´ vqps, ¨q
›

›

9H1 .

Using (4), we may estimate
ˇ

ˇ∇xd|u|Hp|u|qpv ` τpu´ vqq
ˇ

ˇ À p|∇u| ` |∇v|qµp|v ` τpu´ vq|q

and
›

›pd|u|Hp|u|qqpv ` τpu´ vqqps, ¨qpu´ vqps, ¨q
›

›

9H1

À µp}v ` τpu´ vq}L8 q
`

}∇ups, ¨q}L2 ` }∇vps, ¨q}L2

˘

}pu´ vqps, ¨q}L8

` µp}v ` τpu´ vq}L8 qp}ups, ¨q}L8 ` }vps, ¨q}L8 q}∇pu´ vqps, ¨q}L2

À p1 ` sq´2µ
`

ε0p1 ` sq´1
˘

p}u}Xpsq ` }v}Xpsqq}u´ v}Xpsq.

Hence, we may estimate

}Gupt, ¨q ´Gvpt, ¨q}L8

À p}u}Xptq ` }v}Xptqq}u´ v}Xptq

ż t

0

p1 ` t´ sq´1p1 ` sq´1µ
`

ε0p1 ` sq´1
˘

ds

ď C 1
ε0p1 ` tq´1p}u}Xptq ` }v}Xptqq}u´ v}Xptq,

where C 1
ε0 tends to 0 for ε0 to 0.

Summarizing all the estimates implies

}Nu´Nv}Xptq ď Cε0}u´ v}Xptq

`

}u}
2
n

Xptq ` }v}
2
n

Xptq

˘

(15)

for any u, v P Xptq, where Cε0 tends to 0 for ε0 to 0. Due to (14) the operator N maps Xptq into itself if
ε0 is small enough. The existence of a unique global (in time) Sobolev solution u follows by contraction
(15) and continuation argument for small data. □

3. Non-existence result via test function method

Following the proof of Theorem 3, we obtain a local (in time) Sobolev solution u P C
`

r0, T q, H1pRnq X

L8pRnq
˘

to (5). For this reason we restrict ourselves to prove that this solution can not exist globally in
time.

Theorem 5. We introduce the following functions:

ηpsq “

$

’

&

’

%

1 if s P r0, 12 s,

is decreasing if s P p 1
2 , 1q,

0 if s P r1,8q,

η˚psq “

#

0 if s P r0, 12 s,

ηpsq if s P r 12 ,8q,

where the function η “ ηpsq is supposed to belong to C8r0,8q. For R ě R0 ą 0, where R0 is a large
parameter, we define for pt, xq P r0,8q ˆ Rn the cut-off functions

ψR “ ψRpt, xq “ η

ˆ

|x|2 ` t

R

˙n`2

and ψ˚
R “ ψ˚

Rpt, xq “ η˚

ˆ

|x|2 ` t

R

˙n`2

.

We note that the support of ψR is contained in

QR “ r0, Rs ˆB?
R with B?

R “
␣

x P Rn : |x| ď
?
R
(

.

The support of ψ˚
R is contained in

Q˚
R “ QRz

!

pt, xq : |x|2 ` t ď
R

2

)

.
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We suppose that the Sobolev solution u “ upt, xq exists globally in time, that is, the lifespan is T “ T puq “

8. We define the functional

IR “

ż

QR

hp|upt, xq|qψRpt, xq dpt, xq with hpsq :“ s1` 2
nµpsq.

Then, by equation (5), after using integration by parts we arrive at

IR “ ´

ż

Rn

gpxqψRp0, xq dx`

ż

QR

upt, xq
`

B2
tψR ´ ∆ψR ´ BtψR

˘

dpt, xq.

It holds

BtψR “
n` 2

R
η

ˆ

|x|2 ` t

R

˙n`1

η1

ˆ

|x|2 ` t

R

˙

;

B2
tψR “

pn` 2qpn` 1q

R2
η

ˆ

|x|2 ` t

R

˙n

η1

ˆ

|x|2 ` t

R

˙2

`
n` 2

R2
η

ˆ

|x|2 ` t

R

˙n`1

η2

ˆ

|x|2 ` t

R

˙

;

B2
xj
ψR “

4pn` 2qpn` 1qx2j
R2

η

ˆ

|x|2 ` t

R

˙n

η1

ˆ

x2 ` t

R

˙2

`
4pn` 2qx2j

R2
η

ˆ

|x|2 ` t

R

˙n`1

η2

ˆ

|x|2 ` t

R

˙

`
2pn` 2q

R
η

ˆ

|x|2 ` t

R

˙n`1

η1

ˆ

|x|2 ` t

R

˙

.

Thus, since 0 ď η ď 1 and η1, η2 are bounded on r0,8q, there exists C ą 0 such that for each pt, xq P

suppψR it holds
ˇ

ˇB2
tψR ´ ∆ψR ´ BtψR

ˇ

ˇ ď
C

R
pψ˚

Rpt, xqq
n

n`2 .

Thus, we get

IR “

ż

QR

hp|upt, xq|qψRpt, xq dpt, xq ď ´

ż

Rn

gpxqψRp0, xq dx

`
C

R

ż

QR

|upt, xq|pψ˚
Rpt, xqq

n
n`2 dpt, xq. (16)

By applying Lemma 8 from the Appendix with α ” 1 we get

h

˜
ş

Q˚
R

|upt, xq|pψ˚
Rpt, xqq

n
n`2 dpt, xq

ş

Q˚
R
1 dpt, xq

¸

ď

ş

Q˚
R
h
`

|upt, xq|pψ˚
Rpt, xqq

n
n`2

˘

dpt, xq
ş

Q˚
R
1 dpt, xq

.

Taking account of
ż

Q˚
R

|upt, xq|pψ˚
Rpt, xqq

n
n`2 dpt, xq “

ż

QR

|upt, xq|pψ˚
Rpt, xqq

n
n`2 dpt, xq,

ż

Q˚
R

1 dpt, xq “ C

ż

QR

1 dpt, xq,

we arrive at the estimate

h

˜
ş

QR
|upt, xq|pψ˚

Rpt, xqq
n

n`2 dpt, xq

C
ş

QR
1 dpt, xq

¸

ď

ş

QR
h
`

|upt, xq|pψ˚
Rpt, xqq

n
n`2

˘

dpt, xq

C
ş

QR
1 dpt, xq

.

Notice that, since the modulus of continuity µ is non-decreasing, we can estimate

h
`

|upt, xq|pψ˚
Rpt, xqq

n
n`2

˘

ď hp|upt, xq|qψ˚
Rpt, xq.
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Moreover,
ż

QR

1 dpt, xq “ R
n`2
2 .

Thus, thanks again to µ to be a non-decreasing function, there exists h´1 and we may conclude
ż

QR

|upt, xq|pψ˚
Rpt, xqq

n
n`2 dpt, xq ď CR

n`2
2 h´1

˜
ş

QR
hp|upt, xq|qψ˚

Rpt, xq dpt, xq

CR
n`2
2

¸

. (17)

Let us define the functions

y “ yprq “

ż

QR

hp|upt, xq|qψ˚
r pt, xq dpt, xq and Y “ Y pRq “

ż R

0

yprqr´1 dr.

Then, it holds

Y pRq “

ż R

0

ˆ
ż

QR

hp|upt, xq|qψ˚
r pt, xq dpt, xq

˙

r´1 dr

“

ż

QR

hp|upt, xq|q

ˆ
ż R

0

η˚

ˆ

|x|2 ` t

r

˙n`2

r´1 dr

˙

dpt, xq

“

ż

QR

hp|upt, xq|q

ˆ
ż 8

|x|2`t
R

pη˚psqqn`2s´1ds

˙

dpt, xq.

Since supp η˚ Ă r1{2, 1s and η˚ is a non-increasing function on its support, we obtain the estimate
ż 8

|x|2`t
R

pη˚psqqn`2s´1 ds ď η

ˆ

|x|2 ` t

R

˙n`2 ż 1

1
2

s´1 ds ď logp2qη

ˆ

x2 ` t

R

˙n`2

.

Consequently, we may conclude

Y pRq ď logp2q

ż

QR

hp|upt, xq|qψRpt, xq dpt, xq “ logp2q IR.

Moreover, we notice

Y 1pRqR “ ypRq “

ż

QR

hp|upt, xq|qψ˚
Rpt, xq dpt, xq.

Thus, by (16) and (17), we get
Y pRq

logp2q
ď C2R

n
2 h´1

ˆ

Y 1pRq

CR
n
2

˙

.

It follows

h

ˆ

Y pRq

C2 logp2qR
n
2

˙

ď
Y 1pRq

CR
n
2
.

Thus, we have
ˆ

Y pRq

C2 logp2qR
n
2

˙

n`2
n

µ

ˆ

Y pRq

C2 logp2qR
n
2

˙

ď
Y 1pRq

CR
n
2
.

For each R ě R0, since Y “ Y prq is increasing we have Y pRq ě Y pR0q. Thus, since µ is non-decreasing,
we have

ˆ

Y pRq

C2 logp2qR
n
2

˙

n`2
n

µ

ˆ

Y pR0q

C2 logp2qR
n
2

˙

ď
Y 1pRq

CR
n
2
.

Thus, we have
1

RpC2 logp2qq
n`2
n

µ

ˆ

Y pR0q

C2 logp2qR
n
2

˙

ď
Y 1pRq

CY pRq
n`2
n

.
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By integrating from R0 to R, we can conclude that there exist constants c1, c2 such that
ż R

R0

1

s
µ
`

c2s
´ n

2

˘

ds “ c1

ż R
´ n

2
0

R´ n
2

µpsq

s
ds À

„

´
1

Y psq
2
n

ȷR
n
2

R
n
2
0

À
1

Y pR
n
2
0 q

2
n

. (18)

Due to the assumption that u “ upt, xq exists globally in time it is allowed to form the limit R Ñ 8 in (18).
But this produces a contradiction, due to the fact that the right-hand side is bounded and the modulus of
continuity µ satisfies condition (6). This completes our proof. □

4. Appendix

In this section we include the following generalized version of Jensen Inequality ([11]).

Lemma 8. Let Φ be a convex function on R. Let α “ αpxq be defined and non-negative almost everywhere
on Ω, such that α is positive in a set of positive measure. Then, it holds

Φ

ˆ

ş

Ω
upxqαpxq dx
ş

Ω
αpxq dx

˙

ď

ş

Ω
Φpupxqqαpxq dx
ş

Ω
αpxq dx

for all non-negative functions u provided that all the integral terms are meaningful.

Proof. Let γ ą 0 be fixed. From the convexity of Φ it follows that there exists k P R1, such that

Φptq ´ Φpγq ě kpt´ γq for all t ě 0.

Putting t “ upxq and multiplying the last inequality by αpxq, we get after integration over Ω that
ż

Ω

Φpupxqqαpxq dx´ Φpγq

ż

Ω

αpxq dx ě k
´

ż

Ω

upxqαpxq dx´ γ

ż

Ω

αpxq dx
¯

.

The statement follows by putting

γ “

ş

Ω
upxqαpxq dx
ş

Ω
αpxq dx

.

□
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