We consider the Cauchy-type problem associated to the time fractional partial differential equation:{partial derivative(t)u + partial derivative(beta)(t) u - Delta u = g(t, x), t > 0, x is an element of R-nu(0,x) = u(0)(x),with beta is an element of (0, 1), where the fractional derivative partial derivative(beta)(t) is in Caputo sense. We provide a sufficient condition on the right-hand term g(t, x) to obtain a solution in C-b ([0, infinity), H-s). We exploit a dissipative-smoothing effect which allows to describe the asymptotic profile of the solution in low space dimension.

Asymptotic profile for a two-terms time fractional diffusion problem / D'Abbicco, M; Girardi, G. - In: FRACTIONAL CALCULUS & APPLIED ANALYSIS. - ISSN 1311-0454. - 25:3(2022), pp. 1199-1228. [10.1007/s13540-022-00041-3]

Asymptotic profile for a two-terms time fractional diffusion problem

Girardi, G
2022-01-01

Abstract

We consider the Cauchy-type problem associated to the time fractional partial differential equation:{partial derivative(t)u + partial derivative(beta)(t) u - Delta u = g(t, x), t > 0, x is an element of R-nu(0,x) = u(0)(x),with beta is an element of (0, 1), where the fractional derivative partial derivative(beta)(t) is in Caputo sense. We provide a sufficient condition on the right-hand term g(t, x) to obtain a solution in C-b ([0, infinity), H-s). We exploit a dissipative-smoothing effect which allows to describe the asymptotic profile of the solution in low space dimension.
2022
File in questo prodotto:
File Dimensione Formato  
s13540-022-00041-3.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 570.37 kB
Formato Adobe PDF
570.37 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/314606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact