We consider the Cauchy-type problem associated to the time fractional partial differential equation:{partial derivative(t)u + partial derivative(beta)(t) u - Delta u = g(t, x), t > 0, x is an element of R-nu(0,x) = u(0)(x),with beta is an element of (0, 1), where the fractional derivative partial derivative(beta)(t) is in Caputo sense. We provide a sufficient condition on the right-hand term g(t, x) to obtain a solution in C-b ([0, infinity), H-s). We exploit a dissipative-smoothing effect which allows to describe the asymptotic profile of the solution in low space dimension.
Asymptotic profile for a two-terms time fractional diffusion problem / D'Abbicco, M; Girardi, G. - In: FRACTIONAL CALCULUS & APPLIED ANALYSIS. - ISSN 1311-0454. - 25:3(2022), pp. 1199-1228. [10.1007/s13540-022-00041-3]
Asymptotic profile for a two-terms time fractional diffusion problem
Girardi, G
2022-01-01
Abstract
We consider the Cauchy-type problem associated to the time fractional partial differential equation:{partial derivative(t)u + partial derivative(beta)(t) u - Delta u = g(t, x), t > 0, x is an element of R-nu(0,x) = u(0)(x),with beta is an element of (0, 1), where the fractional derivative partial derivative(beta)(t) is in Caputo sense. We provide a sufficient condition on the right-hand term g(t, x) to obtain a solution in C-b ([0, infinity), H-s). We exploit a dissipative-smoothing effect which allows to describe the asymptotic profile of the solution in low space dimension.File | Dimensione | Formato | |
---|---|---|---|
s13540-022-00041-3.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
570.37 kB
Formato
Adobe PDF
|
570.37 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.