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Abstract
We consider the Cauchy-type problem associated to the time fractional partial differ-
ential equation: {

∂t u + ∂
β
t u − Δu = g(t, x), t > 0, x ∈ R

n

u(0, x) = u0(x),

withβ ∈ (0, 1), where the fractional derivative ∂
β
t is inCaputo sense.Weprovide a suf-

ficient condition on the right-hand term g(t, x) to obtain a solution in Cb([0,∞), Hs).
We exploit a dissipative-smoothing effect which allows to describe the asymptotic
profile of the solution in low space dimension.

Keywords Multi-terms fractional ordinary and partial differential equations ·
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1 Introduction

In the present paper we consider the Cauchy-type problem for a fractional (in time)
partial differential equation{

∂t u + ∂
β
t u − Δu = g(t, x) t > 0, x ∈ R

n,

u(0, x) = u0(x),
(1.1)
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where ∂
β
t u denotes the (forward) Caputo fractional derivative of order β ∈ (0, 1), with

starting time 0, with respect to the time variable (see, for instance, [22]). Namely,

∂
β
t u(t, x) = 1

Γ (1 − β)

∫ t

0

∂t u(s, x)

(t − s)β
ds,

for any t > 0 and x ∈ R
n ; here, Γ (·) denotes the gamma function. In Theorem 1, we

show that solutions to (1.1) are bounded in Hs , with respect to t ∈ [0,∞), namely, are
in Cb([0,∞), Hs), if g ∈ L∞

t Hs−2+ε and 〈t〉βg ∈ L∞
t Hs−4, where 〈t〉 = √

1 + t2.
In Theorem 2, in low space dimension n = 1, 2, 3, assuming initial data in L1∩Hs

with s ∈ [0, 2 − n/2) we prove that the asymptotic profile of the solution to (1.1) is
independent of g, provided that suitable decay assumptions on g(t, ·) are satisfied.

As a corollary of this latter result, we investigate a class of nonlinear perturbations
of the problem, for which global-in-time small data solutions exist and we show that
their asymptotic profile is independent on the nonlinear perturbation.

One crucial property which allow us to get the previous results is a smoothing
effect. In particular, the Hs norm of u(t, ·) at any time t > 0 can be controlled by
C(t) ‖u0‖Hs−2 , if g ≡ 0. However, C(t) → ∞ as t → 0 (see (3.10) and (3.12)). This
effect is analogous to the smoothing effect of the heat equation and related parabolic
equations, but it only allows to gain a finite amount of regularity. The smoothing effect
also appears with respect to the inhomogeneous term g(t, ·), with a different singular
power (see (3.9) and (3.13)), since the Duhamel’s principle does not hold in classical
sense, for Cauchy-type problems with Caputo fractional derivatives, as (1.1) (see later,
Lemma 1).

The counterpart of this limited smoothing effect is a limited dissipative effect which
appears at long time: higher order derivatives of the solution vanish as t → ∞ with
a faster speed, but not faster than t−β . As for the smoothing effect, this limitation is
due to the structure of the fundamental solution of the equation. In particular, to show
the optimality of the decay estimates, at least in low space dimension, we describe the
asymptotic profile of the solution, under suitable decay assumption on g(t, x). Under
the moment condition M �= 0, where

M =
∫
Rn

u0(x) dx , (1.2)

this profile is described by M K †
0 (t, x), where K †

0 is the fundamental solution to the
homogeneous Cauchy-type problem for the sub-diffusive fractional equation

{
∂

β
t v − Δv = 0 t > 0, x ∈ R

n,

v(0, x) = v0(x).
(1.3)

Explicitly, K †
0 (t, x) = t−

nβ
2 K †

0 (1, t
− β

2 x) is given by:

K †
0 (1, ·) = sin(βπ)

βπ
F−1

(∫ ∞

0
e−τ

1
β |ξ |2

|ξ |4 + τ 2 + 2τ |ξ |2 cos(βπ)
dτ

)
; (1.4)

123



Asymptotic profile for a two-terms time... 1201

in particular, K †
0 (1, ·) belongs to H2− n

2 (see for instance [10]). Here, and in the fol-
lowing,F denotes the Fourier transform operator acting on the space variable x , and
f̂ (t, ξ) = (F (t, ·))(ξ). By representation (1.4), the limited amount of smoothing
effect is motivated by the fact that |K̂ †

0 (1, ξ)| ≈ |ξ |2〈ξ 〉−4.
The dissipative-smoothing effect also appears in other evolution equations, for

instance, in the case of strongly damped waves [41] (see also [8]), and of more general
damped evolution equations [15]. However, those cases are more related to the heat
equation and other diffusive equations, since the smoothing effect is not limited by
〈ξ 〉−2. The study of the Hs well-posedness for multi-point value problems for partial
differential equations of fractional order similar to (1.1) is already faced, for instance,
in [18].

The main difficulty in dealing with the equation in (1.1) is its lack of homogeneity.
Theorems 1 and 2 are based on the representation formula provided by Lemma 1 for
the solution to the Cauchy-type problem

{
y′(t) + ∂

β
t y(t) + λy(t) = g(t) t > 0,

y(0) = c0,
(1.5)

with λ > 0 and c0 ∈ R.

1.1 Background

We refer to [22] or [33] for a deep study about the theory of fractional derivatives.
It is well known that differential equations with fractional derivatives turned out to
be suitable to describe in a very good way various physical phenomena in areas like
rheology, biology, engineering, mathematical physics, etc. (see for instance [16, 25,
26, 28, 33] and the reference given therein). Open problem in this field is finding some
easy and effective methods for solving such equations. Such problem becomes even
more difficult whenmultiple fractional in time derivatives are involved in the equation.
In the literature some authors considered the two-term time fractional diffusion-wave
equation of the type

b1∂
δ1
t w + b2∂

δ2
t w − c2Δw = F(t, x, w), (1.6)

for b1, b2 ∈ R, δ1, δ2 > 0 and F ≡ 0 or F nonlinear; then, they investigate the exis-
tence of solution to the Cauchy-type problem associated to (1.6) in suitable spaces,
under given assumptions on the exponents δ1 and δ2 and on the function F . A deep
review can be found for instance in [43]; here, the authors find the upper viscosity
solutions to (1.6) for b1 + b2 = 1, c = 1 and δ1, δ2 ∈ (0, 2), considering a non-
linear lipschitz term F , in the L p(Rn) framework, for 1 ≤ p ≤ ∞. Equation (1.6)
with δ1 = 2δ2 is known as the time-fractional telegraph equation; it is studied for
instance in [39] where the authors obtain the Fourier transform of the solutions for
any δ2 ∈ (0, 1] expressed in terms of Mittag-Leffler functions and they give a rep-
resentation of their inverse, in terms of stable densities; the special case δ2 = 1/2
can be interpreted as a heat equation subject to a damping effect, represented by the
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1/2-order time-derivative; in this case they show that the fundamental solution is the
distribution of a telegraph process with Brownian time. In [42] the author investi-
gates the existence and uniqueness of local (in time) solutions to the nonlinear n-term
time-fractional differential equation with constant coefficients in the Banach space
C([0, T ]). Some results about the well-posedness and regularity of solutions to (1.6)
in bounded domains are presented for instance in [4, 9, 45].

Having in mind to apply the Fourier transform to the linear equation associated
to (1.6), it is understandable as the problem of finding a suitable representation of
solution is strictly related to solving fractional ordinary differential equations in the
form

∂
δ1
t w + ∂

δ2
t w + λw = 0, (1.7)

for λ ∈ R. In [24] the authors develop the operational calculus of Mikusiński’s type
for the Caputo fractional differential equation, in order to obtain exact solutions of the
initial value problem associated to (1.7) through Mittlag-Leffler type functions. The
special cases δ1 = 1, δ2 ∈ (0, 1) and, respectively, δ1 = 2, δ2 ∈ (1, 2)havebeendeeply
investigated in [17] takingλ = 1 and are referred as the composite fractional relaxation
equation and, respectively, the composite fractional oscillation equation; here, by
applying the technique of Laplace transforms they derive the analytical solutions to
such equations.

In particular, the fractional differential equation in (1.7) with δ1 = 1, δ2 = 1/2
corresponds to the Basset problem: it represents a classical problem in fluid dynamics
where the unsteady motion of a particle accelerates in a viscous fluid due to the force
of gravity. The situation of a sphere subjected to gravity was first considered indepen-
dently by Boussinesq [6] and by Basset [2], who introduced a special hydrodynamic
force, which is nowadays referred to as Basset force. The whole was summarized
by Basset himself in a later paper [3], and, in more recent times, by Hughes and
Gilliand [19]. Nowadays the dynamics of impurities in unsteady flows is investigated
as shown by several publications, which aim to provide more general expressions for
the hydrodynamic forces, including the Basset force, in order to fit experimental data
and numerical simulations, see e.g. [5, 23, 29–32, 37, 38]. For a complete history of
the Basset problem one can refer to [7].

In [14] the Cauchy-type problem

⎧⎪⎨
⎪⎩

∂
β
t w − Δw = g(t, x) t > 0, x ∈ R

n,

w(0, x) = w0(x),

wt (0, x) = w1(x),

is investigated in the case β ∈ (1, 2). Under suitable assumptions on the nonhomo-
geneous term g(t, x), the authors investigate some L p − Lq decay estimates for the
solution w; then, they apply such estimates to study the corresponding semilinear
problem.
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Notation

In this paper, L∞
t X denotes L∞([0,∞), X), i.e., the space of essentially bounded

functions from [0,∞) to X . Moreover, Cb([0,∞), X) denotes the space of continuous
bounded functions from [0,∞) to X . In the both cases, ‖g‖L∞

t X denotes the norm
supt≥0 ‖g(t, ·)‖X . For any s ∈ R,

Hs =
{
f ∈ S ′ : 〈ξ 〉s f̂ ∈ L2

}
,

is the (fractional) Sobolev space equipped with norm ‖ f ‖Hs = ‖〈ξ 〉s f̂ ‖L2 , where the
symbol 〈ξ 〉 denotes the quantity √

1 + |ξ |2. For f ∈ Hs with s ≥ 0, we also define
‖ f ‖Ḣ s = ‖|ξ |s f̂ ‖L2 . It is clear that H0 = L2 and ‖ f ‖Ḣ0 = ‖ f ‖L2 .

For q ∈ (1,∞) and s ∈ R we also define the Bessel potential space [1]

Hs,q =
{
f ∈ S ′ : 〈ξ 〉s f̂ ∈ Lq

}
,

equipped with norm ‖ f ‖Hs,q = ‖F−1(〈ξ 〉s f̂ )‖Lq . We recall that ‖ f ‖Hs,q ≤ ‖ f ‖Lq

for any s < 0.
In this paper, f � g means that f ≤ Cg for some constant C > 0, and f ≈ g

means that f � g � f .

1.2 Results

We first present a sufficient condition on g such that the solution to (1.1) remains
bounded in Hs .

Theorem 1 Let n ≥ 1 and s ∈ R. Assume that u0 ∈ Hs and that g ∈ L∞
t Hs−2+ε for

some ε > 0. Then the solution u to (1.1) is in C([0,∞), Hs) and

‖u(t, ·)‖Hs ≤C ‖u0‖Hs +Cε‖g‖L∞
t Hs−2+ε + C

∫ t

0
(t − τ)−(1−β)‖g(τ, ·)‖Hs−4 dτ,

(1.8)

for any t ≥ 0, where C > 0 and Cε > 0 are independent of t . In particular, u is in
Cb([0,∞), Hs) and

‖u‖L∞
t Hs ≤ C

(‖u0‖Hs + A
) + Cε‖g‖L∞

t Hs−2+ε ,

if A = supt≥0〈t〉β‖g(t, ·)‖Hs−4 is finite.

When n ≤ 3 and s ∈ [0, 2 − n/2), the embedding L1 ↪→ Hs−2 holds, hence the
smoothing effect is sufficient to describe the asymptotic profile in Hs of the solution
to (1.1), in the form M K †

0 (t, x), where M is as in (1.2), provided that we assume the
moment condition M �= 0 and that we make suitable decay assumptions on g(t, ·) as
t → ∞.
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Theorem 2 Let n = 1, 2, 3, and s ∈ [0, 2 − n/2). Assume that u0 ∈ L1 ∩ Hs, and
that g ∈ L∞

t Hs−2+ε for some ε > 0, also satisfies

B1 := sup
t≥0

Q1(t) < ∞, (1.9)

where

Q1(t) := 〈t〉 nβ
4

(〈t〉β ‖g(t, ·)‖Hs−4 + 〈t〉 sβ
2 ‖g(t, ·)‖Hs−2+ε

)
.

If

n

4
β + β ≥ 1, (1.10)

we also assume that g ∈ L∞
t Hs+a−4,q for some q ∈ (1, 2), where

a = n

(
1

q
− 1

2

)
,

n

2
β

(
1 − 1

q

)
+ β < 1, (1.11)

and that

B2 := sup
t≥0

Q2(t) < ∞, (1.12)

where

Q2(t) := 〈t〉
nβ
2

(
1− 1

q

)
+β ‖g(t, ·)‖Hs+a−4,q .

Then, u is in Cb([0,∞), Hs) and there exists C > 0 independent of t , such that
(B2 = 0 in the following, if (1.10) does not hold)

‖u(t, ·)‖Ḣ s ≤ C(1 + t)−
nβ
4 − sβ

2 (‖u0‖Hs∩L1 + B1 + B2). (1.13)

In particular, if lim supt→∞ Q1(t) = 0 and, in addition, lim supt→∞ Q2(t) = 0
when (1.10) holds, then the solution u also satisfies

‖u(t, ·) − MK †
0 (t, ·)‖Ḣ s = o(t−

nβ
4 − sβ

2 ), t → ∞. (1.14)

When M �= 0, we may say that the asymptotic profile of u(t, ·) in Hs as t → ∞, is
MK †

0 (t, ·).
Remark 1 We stress that s − 4 < s − 2 + ε < 0 for sufficiently small ε > 0, and
s + a − 4 < 0, in Theorem 2, so that B1 and B2 in (1.9) and (1.12) are finite if there
exists B > 0 such that

〈t〉β (〈t〉 nβ
4 ‖g(t, ·)‖L2 + 〈t〉

nβ
2

(
1− 1

q

)
‖g(t, ·)‖Lq

) ≤ B; (1.15)
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in particular, conditions (1.9) and (1.12) are satisfied for B1 = 2B and B2 = B.
Similarly, the conditions limt→∞ Qi (t) = 0 hold for i = 1, 2 if

lim
t→∞ tβ

(
t
nβ
4 ‖g(t, ·)‖L2 + t

nβ
2

(
1− 1

q

)
‖g(t, ·)‖Lq

) = 0. (1.16)

We may apply Theorem 2 to study the semilinear problem{
∂t u + ∂

β
t u − Δu = f (u), t > 0, x ∈ R

n,

u(0, x) = u0(x),
(1.17)

where f (u) = |u|p for some p ≥ 2, or, more in general,

| f (u) − f (v)| ≤ C |u − v|(|u|p−1 + |v|p−1). (1.18)

Then, as a consequence of Theorem 2 we have the following result:

Corollary 1 Let n = 1, 2 and assume that p ≥ 1 + 2/n in (1.18). Fix s such that

n

2

(
1 − 1

p

)
≤ s < 2 − n

2
.

Then there exists ε > 0 such that for any initial data

u0 ∈ L1 ∩ Hs, with ‖u0‖L1 + ‖u0‖Hs ≤ ε, (1.19)

there is a uniquely determined solution u ∈ Cb([0,∞), Hs) to (1.17). Moreover, if
p > 1 + 2/n then

‖u(t, ·) − MK †
0 (t, ·)‖Ḣκ = o(t−

nβ
4 − κβ

2 ), for κ = 0, s, as t → ∞. (1.20)

Thus, when M �= 0 and p > 1+ 2/n, Corollary 1 means that the nonlinearity does
not influence the asymptotic profile of the solution to (1.17). The critical exponent
1 + 2/n is sharp [10]. We notice that in the critical case p = 1 + 2/n, Corollary 1
guarantees the existence of a global small data solution, but the asymptotic profile of
the solution to (1.17) depends on the nonlinearity, in general.

Theorems 1 and 2 are based on the following representation formula for the solution
to (1.5).

Lemma 1 Assume that y = y(t) solves the Cauchy problem (1.5). Then

y(t) = c0K0(t) +
∫ t

0
g(t − τ)K1(τ ) dτ,

where K0 and K1 have the following integral representations:

K0(t) = sin(βπ)

π

∫ ∞

0
e−xt λ x−1+β

(λ − x)2 + x2β + 2xβ cos(βπ)(λ − x)
dx, (1.21)
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1206 M. D’Abbicco , G. Girardi

K1(t) = sin(βπ)

π

∫ ∞

0
e−xt xβ

(λ − x)2 + x2β + 2xβ cos(βπ)(λ − x)
dx, (1.22)

for any t ≥ 0. Moreover, we may write K0(t) = 1− λ
∫ t
0 K1(r)dr, that is, ∂t K0(t) =

−λK1(t).

The fact that K0 and K1 are different inLemma1means that theDuhamel’s principle
does not hold in classical sense.

Remark 2 Applying the change of variable xt = τ
1
β we obtain the following repre-

sentations for K0(t) and K1(t):

K0(t) = sin(βπ)

βπ

∫ ∞

0

e−τ
1
β
λt2−β

(tλ − τ
1
β )2 + τ 2t2(1−β) + 2τ t1−β cos(βπ)(tλ − τ

1
β )

dτ,

K1(t) = sin(βπ)

βπ

∫ ∞

0

e−τ
1
β
τ

1
β t1−β

(tλ − τ
1
β )2 + τ 2t2(1−β) + 2τ t1−β cos(βπ)(tλ − τ

1
β )

dτ.

1.3 Comparison with the dampedwave equation

ByTheorem2we deduce that the solution u to the homogeneousCauchy-type problem
associated to (1.1), asymptotically behaves as the solution v to (1.3). There are several
analogies with the diffusion phenomenon studied for the damped wave equation [27,
34, 36]:

⎧⎪⎨
⎪⎩
utt − Δu + ut = 0 t ≥ 0, x ∈ R

n,

u(0, x) = u0(x), x ∈ R
n,

ut (0, x) = u1(x), x ∈ R
n .

The asymptotic profile of the solution is described by u ∼ MG(t, x), where G =
(4π t)− n

2 e− |x |2
4t is the fundamental solution to the heat equation and

M =
∫
Rn

(u0(x) + u1(x)) dx,

under the assumption of nonzero moment condition M �= 0. This diffusion phe-
nomenon allowed to prove the global existence of small data solutions to the semilinear
problem with power nonlinearity f (u), in the supercritical case p > 1 + 2/n (see
[44]), as for the semilinear heat equation. A nonlinearity, in general, influences the
asymptotic profile of the solution, see [21]. In Corollary 1, we showed that this is
not the case for our equation in the supercritical case. This latter phenomenon is a
consequence of the special structure of the Cauchy-type problem for fractional equa-
tions, and of the fact that the Duhamel’s principle does not hold in classical sense, see
Lemma 1.
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Diffusion phenomena hold, more in general, for evolution equations

{
utt + (−Δ)σu + (−Δ)θut = 0, t ≥ 0, x ∈ R

n,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ R
n,

(1.23)

when the damping is effective damping according to the classification introduced by the
authors in [12], that is, 2θ < σ . Here, (−Δ)α denotes the fractional Laplace operator
of order α > 0 defined on S as (−Δ)α f = F−1(|ξ |2α f̂ ). If θ = 0 the solution to
(1.23) behaves asymptotically like the solution to the corresponding diffusive equation,
with initial data u0 + u1, namely by e−t(−Δ)σ (u0 + u1); for θ > 0 a double diffusion
phenomenon holds, that is, two different diffusive equations compete to describe the
asymptotic profile of the solution to (1.23) (see [11]). On the other hand, when 2θ > σ ,
the asymptotic profile to (1.23) is completely different; in particular, thewave structure
appears and oscillations come into play (see [20]).

Inspired by the results just described, the main goal of the present paper is to show
how the fractional in time derivative ∂

β
t u in (1.1) influences the asymptotic profile of

the solution with respect to the undamped heat equation: the presence of the fractional
order member deeply influences the structure of the fundamental solution of equation
(1.1); as a consequence, a dissipative-smoothing effect appears and the asymptotic
profile of the solution to (1.1) is described by MK †

0 (t, ·), independently on the non-
homogeneous term, under suitable decay assumptions on g(t, ·) (see Theorem 2).

2 Proof of Lemma 1

In order to prove Lemma 1wewill use the Laplace transformmethod. Given a function
ϕ = ϕ(t) of a real variable t ∈ R+ = [0,∞), L(ϕ) denotes its Laplace transform
defined by

(Lϕ)(s) :=
∫ ∞

0
e−stϕ(t) dt (s ∈ C).

Under suitable assumptions, the inverse Laplace transform of a given function F =
F(s), holomorphic in some half-plane {�s > λ}, is given for any t ∈ R+ by the
formula

f (t) = L−1(F(s))(t) = lim
b→∞

1

2π i

∫ a+ib

a−ib
est F(s) ds, (2.1)

where a > λ.
TheLaplace transformhasmany propertieswhich are useful for studying dynamical

systems. In particular, we mention that for any α ∈ (0, 1] the following transform rule
holds

L(
∂α
t ϕ

)
(s) = sαL(ϕ)(s) − sα−1ϕ(0), (2.2)

123



1208 M. D’Abbicco , G. Girardi

for suitable good functions ϕ (see, for instance, [22]); such formula will allows us to
transform the fractional differential equation in (1.5) in a functional equation.

Let us apply the Laplace transform to the fractional differential equation in (1.5).
Applying the identity (2.2) we get the functional equation

sL(y)(s) − c0 + sβL(y)(s) − sβ−1c0 + λL(y)(s) = L(g)(s),

that is

L(y)(s) = c0
1 + sβ−1

s + sβ + λ
+ L(g)(s)

s + sβ + λ
. (2.3)

Here and hereafter, for any s ∈ C, with s = reiθ , and α ∈ (0, 1) we are denoting
by sα its root of order α on the principal branch, i.e., sα := rαeiαθ with θ ∈ (−π, π).

Thus, using the convolution theorem L( f ∗ h) = L( f )L(h) we find

y(t) = c0K0(t) +
∫ t

0
g(t − τ)K1(τ ) dτ,

where for any t ≥ 0 we set

K0(t) := L−1
(

1 + sβ−1

s + sβ + λ

)
(t), K1(t) := L−1

(
1

s + sβ + λ

)
(t). (2.4)

We notice that

K0(t) = L−1
(
1

s

)
(t) − λL−1

(
1

s

1

s + sβ + λ

)
(t) = 1 − λ

∫ t

0
K1(r) dr ,

thanks to the properties of the Laplace transform.
The remaining part of this section is devoted to the proof of Lemma 1 starting from

the identities in (2.4). In order to get this aim we will use two different approaches:
the first approach is based on the direct evaluation of the inverse Laplace transforms
in (2.4); on the other hand, in the second approach we will express K0(t) and K1(t)
as a combination of Mittag-Leffler functions.

2.1 Laplace Transfrommethod

In order to get the desired integral representations in (1.21)-(1.22) we will use the
integral formula for the inverse Laplace transform given in (2.1).

Let us define the function ω : C → C such that ω(s) := s + sβ + λ. We remark
that ω has no zeros in C: suppose that s0 = r0 cos θ0 + ir sin θ0 is a zero of ω; then
the couple (r0, θ0) satisfies the system{

r cos θ + rβ cos(βθ) + λ = 0,

r sin θ + rβ sin(βθ) = 0; (2.5)
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Fig. 1 Hankel path (from [35])

but this system has no solutions (r0, θ0) ∈ R+ ×[−π, π); in fact, the second equation
admits as solutions only the couples (r , 0), and such couple never solves the first
equation.

By definition (2.1), in order to give an integral representation of K1(t) we evaluate
the limit

lim
b→∞

1

2π i

∫ a+ib

a−ib
F(t, s) ds,

where a > 0 and F(t, s) := est/ω(s) for any t ≥ 0. In order to calculate such integral,
we consider the region delimited by the so calledHankel path, defined by the segment
(a− ib, a+ ib), arcs C ′

R and C ′′
R , segments I and I I , and the circle Cr as represented

in Fig. 1.
The path is contained in C \ R−, where the function F(t, s) is holomorphic; thus,

we can apply the Cauchy theorem to get

1

2π i

∫ a+ib

a−ib
F(t, s) ds = 1

2π i

( ∫
I
F(t, s) ds +

∫
I I

F(t, s) ds

+
∫
Cr

F(t, s) ds +
∫
C ′
R

F(t, s) ds +
∫
C ′′
R

F(t, s) ds
)
.

As a consequence of the Jordan lemma we immediately obtain that

lim
R→∞

∫
C ′
R

F(t, s) ds = lim
R→∞

∫
C ′′
R

F(t, s) ds = 0;

moreover, it is easy to check that also the integral over Cr tends to 0 as r → 0.
Therefore, we conclude
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1210 M. D’Abbicco , G. Girardi

K1(t) = 1

2π i

∫ ∞

0
e−xt

( 1

−x + xβ(cos(βπ) − i sin(βπ)) + λ

− 1

−x + xβ(cos(βπ) + i sin(βπ)) + λ

)
dx

= 1

π

∫ ∞

0
e−xt xβ sin(βπ)

(λ − x)2 + x2β + 2xβ cos(βπ)(λ − x)
dx .

We use the same approach to get the desired integral representation of K0, defined
as

K0(t) = lim
b→∞

1

2π i

∫ a+ib

a−ib
G(t, s) ds,

whereG(t, s) := est (1+sβ−1)/ω(s). Also in this case, the path is contained inC\R−,
where the function G(t, s) is holomorphic. Thus, using the same notation as for K1,
we get

K0(t) = 1

2π i

( ∫
I
G(t, s) ds +

∫
I I
G(t, s) ds

+
∫
Cr

G(t, s) ds +
∫
C ′
R

G(t, s) ds +
∫
C ′′
R

G(t, s) ds
)
.

As a consequence of the Jordan lemma we can conclude that the integrals over C ′
R

and C ′′
R tend to 0 as R → ∞; moreover, it is easy to check that also the integral over

Cr goes to 0 as r → 0. Thus, we get

K0(t) = 1

2π i

∫ ∞

0
e−xt

(1 + xβ−1(cos((β − 1)π) − i sin((β − 1)π))

−x + xβ(cos(βπ) − i sin(βπ)) + λ

−1 + xβ−1(cos((β − 1)π) + i sin((β − 1)π))

−x + xβ(cos(βπ) + i sin(βπ)) + λ

)
dx

= 1

π

∫ ∞

0
e−xt λxβ−1 sin(βπ)

(λ − x)2 + x2β + 2xβ cos(βπ)(λ − x)
dx .

This complete the proof of Lemma 1.

2.2 Mittag-Leffler functions

In this sectionwe showhow the simplest caseβ = 1/2 canbe treatedwith an alternative
approach. In order to obtain the desired representations (1.21) and (1.22) we follow
the idea given in [17] to provide the solutions K0 and K1 in terms of Mittag-Leffler
functions. By (2.3) we know that the Laplace tranform of the solution y = y(t) to
(1.5) has the representation

y(t) = c0K0(t) +
∫ t

0
g(t − τ)K1(τ ) dτ,
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Asymptotic profile for a two-terms time... 1211

where for any t ≥ 0, the values of K0(t) and K1(t) are defined in (2.4).
Let s± denote the two roots of the second degree polynomial s2 + s + λ; then, it

holds

ω(s) = (s
1
2 − s+)(s

1
2 − s−), s± = −1 ± √

1 − 4λ

2
.

Here, s± satisfies the useful relations

s+s− = λ, s+ − s− = √
1 − 4λ.

Thus, we can write

1 + s− 1
2

ω(s)
= A−

s
1
2 (s

1
2 − s+)

+ A+
s
1
2 (s

1
2 − s−)

(2.6)

and

1

ω(s)
= A+

s
1
2 (s

1
2 − s+)

+ A−
s
1
2 (s

1
2 − s−)

, (2.7)

where A± := ±s±/(s+ − s−). As a consequence it is possible to write K0(t) and
K1(t) as a linear combination of Mittag Leffler functions; such functions are defined
by the following series representation,

Eα(z) :=
∞∑
k=0

zk

Γ (αk + 1)
, α > 0, z ∈ C.

In particular, it is possible to prove that for any μ ∈ R,

L−1
(

1

s
1
2 (s

1
2 − μ)

)
= E 1

2
(μ

√
t); (2.8)

in fact, by formula (1.9.13) in [22] we know:

L(
(E 1

2
(μ

√
t)

)
(s) = 1

s
1
2 (s

1
2 − μ)

;

thus, (2.8) follows since E 1
2
(μ

√·) is continuous with respect to t ∈ [0,∞).
As a consequence of (2.8), by (2.6) and (2.7) we obtain

K0(t) = A−E 1
2
(s+

√
t) + A+E 1

2
(s−

√
t), (2.9)

and

K1(t) = A+E 1
2
(s+

√
t) + A−E 1

2
(s−

√
t). (2.10)
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1212 M. D’Abbicco , G. Girardi

In order to get the desired integral representations in (1.21)-(1.22) we will use the
following useful lemma that is a particular case of Theorem 1 in [40].

Lemma 2 The following representation holds

E 1
2
(z) = − 2

π

∫ ∞

0
e−τ 2 z

τ 2 + z2
dτ,

for any z ∈ C such that | arg(z)| ∈ (π/2, π ].
We remark that �(s±) < 0; thus, | arg(s±)| ∈ (π/2, π ]. Therefore, the proof of

Lemma 1 follows as a consequence of (2.9) and (2.10), applying Lemma 2.

Remark 3 In the general case β ∈ (0, 1) one can express the kernels K0 and K1 in
terms of multivariate Mittag-Leffler functions (see [24]):

E(a1,...,an),b(z1, . . . , zn) :=
∞∑
k=0

∑
�1+···+�n=k
�1≥0,...,�n≥0

k!
�1! × · · · × �n !

�n
i=1z

�i
i

Γ (b + ∑n
i=1 ai�i )

.

Indeed, one can prove

K0(t) = 1 − λt E(1−β,1),2(−t1−β,−λt),

and

K1(t) = E(1−β,1),1(−t1−β,−λt).

3 Decay estimates

Applying the Fourier transform with respect to the space variable in (1.1) we get the
following Cauchy problem for a parameter dependent fractional differential equation:

{
∂t û + ∂

β
t û + |ξ |2û = ĝ(t, ξ)

û(0, ξ) = û0(ξ).
(3.1)

By Lemma 1, the solution is

û(t, ξ) = K̂0(t, ξ)û0(ξ) +
∫ t

0
K̂1(t − τ, ξ)ĝ(τ, ξ) dτ,

where
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Asymptotic profile for a two-terms time... 1213

K̂0(t, ξ)

= sin(βπ)

βπ

∫ ∞

0

e−τ
1
β |ξ |2t2−β

(t |ξ |2 − τ
1
β )2 + t2(1−β)τ 2 + 2τ t1−β cos(βπ)(|ξ |2t − τ

1
β )

dτ,

(3.2)

K̂1(t, ξ)

= sin(βπ)

βπ

∫ ∞

0

e−τ
1
β
τ

1
β t1−β

(t |ξ |2 − τ
1
β )2 + t2(1−β)τ 2 + 2τ t1−β cos(βπ)(|ξ |2t − τ

1
β )

dτ,

(3.3)

As a consequence, we obtain the representation

u(t, x) = K0(t, ·) ∗(x) u0 +
∫ t

0
g(τ, ·) ∗(x) K1(t − τ, ·) dτ. (3.4)

By the change of variable ξ �→ t
β
2 ξ , for any s ≥ 0 and 1 ≤ q ≤ ∞, we obtain

‖K̂ j (t, ·)|ξ |s‖Lq = t−
nβ
2q − sβ

2 ‖R̂ j (t, ·)|ξ |s‖Lq , (3.5)

where

R̂0(t, ·) = sin(βπ)

βπ
t2(1−β)

∫ ∞

0
e−τ

1
β |ξ |2

ϕ(t, τ, ξ)
dτ,

R̂1(t, ·) = sin(βπ)

βπ
t1−β

∫ ∞

0
e−τ

1
β τ

1
β

ϕ(t, τ, ξ)
dτ,

ϕ(t, τ, ξ) = (t1−β |ξ |2 − τ
1
β )2 + t2(1−β)τ 2 + 2τ t1−β cos(βπ)(t1−β |ξ |2 − τ

1
β ),

Noticing that

ϕ(t, τ, ξ) ≥ (1 − | cos(βπ)|)((t1−β |ξ |2 − τ
1
β )2 + t2(1−β)τ 2

)
, (3.6)

it is useful to divide the half-line R+ in two regions, depending on t and ξ :

It,ξ =
[τ0

2
, 2τ0

]
, τ0 = (|ξ |2t1−β

)β
, Jt,ξ = R+ \ It,ξ . (3.7)

Therefore, we can estimate

ϕ(t, τ, ξ) ≥
{
c1 t2(1−β)τ 2 if τ ∈ It,ξ ,

c2
(
t2(1−β)(|ξ |4 + τ 2) + τ

2
β
)

if τ ∈ Jt,ξ .
(3.8)
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1214 M. D’Abbicco , G. Girardi

Thanks to (3.8), we prepare the pointwise estimates for R̂0(t, ξ) and R̂1(t, ξ).

Lemma 3 The following estimates hold:

|R̂1(t, ξ)| �
{
t−(1−β)〈ξ 〉−4 if t ≥ 1,

〈t 1−β
2 ξ 〉−4 if t ≤ 1,

(3.9)

|R̂0(t, ξ)| �
{

〈ξ 〉−2 if t ≥ 1,

〈t 1−β
2 ξ 〉−2 if t ≤ 1.

(3.10)

Proof In order to get the desired estimates, we split the integral in the two regions It,ξ
and Jt,ξ defined in (3.7).

We first consider R̂1(t, ξ). By using estimate (3.8) in It,ξ , we get

t1−β

∫ 2τ0

τ0/2

e−τ
1
β
τ

1
β

ϕ(t, τ, ξ)
dτ � t−(1−β) e−(τ0/2)

1
β

∫ 2τ0

τ0/2
τ

1
β
−2 dτ

≈ t−(1−β) τ
1
β
−1

0 e−(τ0/2)
1
β
.

In particular, since β < 1 this latter term may be estimated by the quantity
t−(1−β) 〈t1−β |ξ |2〉−M , for any M ≥ 0. However, for short times, the estimate above
is singular at t = 0, so we proceed in a different way:

t1−β

∫ 2τ0

τ0/2

e−τ
1
β
τ

1
β

ϕ(t, τ, ξ)
dτ � t1−βτ0e

−(τ0/2)
1
β

∫ 2τ0

τ0/2

τ
1
β
−1

(t1−β |ξ |2 − τ
1
β )2 + t2(1−β)τ 20

dτ

� t1−β τ0 e
−(τ0/2)

1
β

∫ +∞

−∞
1

s2 + t2(1−β)τ 20
ds ≤ C e−(τ0/2)

1
β
,

where we first used the change of variable s = τ
1
β − t1−β |ξ |2 and then the change of

variable r = s/(t1−βτ0). Summarizing, we proved

t1−β

∫ 2τ0

τ0/2

e−τ
1
β
τ

1
β

ϕ(t, τ, ξ)
dτ �

{
t−(1−β) 〈t1−β |ξ |2〉−M if t ≥ 1,

〈t1−β |ξ |2〉−M if t ≤ 1,

for any M ≥ 0. We now consider the integral over Jt,ξ . If we use (3.8) to estimate
ϕ(t, τ, ξ) � t2(1−β)|ξ |4, then we find

t1−β

∫
Jt,ξ

e−τ
1
β
τ

1
β

ϕ(t, τ, ξ)
dτ � t−(1−β)|ξ |−4

∫ ∞

0
e−τ

1
β
τ

1
β dτ � t−(1−β)|ξ |−4,
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whereas, if we use (3.8) to estimate ϕ(τ, ξ) ≥ t2(1−β)τ 2 as we did in It,ξ , we find

t1−β

∫
Jt,ξ

e−τ
1
β
τ

1
β

ϕ(t, τ, ξ)
dτ � t−(1−β)

∫ ∞

0
e−τ

1
β
τ

1
β
−2 dτ � t−(1−β).

Therefore, we obtain

t1−β

∫
Jt,ξ

e−τ
1
β
τ

1
β

ϕ(t, τ, ξ)
dτ � t−(1−β)〈ξ 〉−4.

Comparingwith the estimate of the integral over It,ξ , we conclude the proof of (3.9)

for t ≥ 1, using 〈t 1−β
2 ξ 〉−4 ≤ 〈ξ 〉−4.

However, for short times, the estimate above is singular at t = 0, then we estimate

ϕ(t, τ, ξ) � t2(1−β)τ 2 + τ
2
β ,

so that

t1−β

∫
Jt,ξ

e−τ
1
β
τ

1
β

ϕ(t, τ, ξ)
dτ � t1−β

∫
Jt,ξ

τ
1
β
−2

t2(1−β) + τ
2
(
1
β
−1

) dτ

� t1−β

∫ ∞

0

1

t2(1−β) + s2
ds ≤ C,

where we used first the change of variable s = τ
1
β
−1 and then the change of variable

r = s/t1−β . Summarizing, at short time, we may estimate

t1−β

∫
Jt,ξ

e−τ
1
β
τ

1
β

ϕ(t, τ, ξ)
dτ � 〈t 1−β

4 ξ 〉−4.

Comparingwith the estimate of the integral over It,ξ , we conclude the proof of (3.9)

for t ≤ 1, using 〈t 1−β
4 ξ 〉−4 ≤ 〈t 1−β

2 ξ 〉−4.
We now prove (3.10). If we use (3.8) to estimate ϕ(t, τ, ξ) � t2(1−β)|ξ |4 when we

integrate over Jt,ξ , then we find

∫
Jt,ξ

e−τ
1
β t2(1−β)|ξ |2

ϕ(t, τ, ξ)
dτ � |ξ |−2

∫ ∞

0
e−τ

1
β
dτ � |ξ |−2.

On the other hand, if we use (3.8) to estimate ϕ(t, τ, ξ) � t2(1−β)(|ξ |4 + τ 2), we
obtain∫

Jt,ξ
e−τ

1
β t2(1−β)|ξ |2

ϕ(t, τ, ξ)
dτ � |ξ |2

∫ ∞

0

1

|ξ |4 + τ 2
dτ =

∫ ∞

0

1

1 + ρ2 dρ = π

2
.
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1216 M. D’Abbicco , G. Girardi

Therefore,

∫
Jt,ξ

e−τ
1
β t2(1−β)|ξ |2

ϕ(t, τ, ξ)
dτ � 〈ξ 〉−2.

Now we consider the integral over It,ξ . In this case, we get

t2(1−β)|ξ |2
∫
It,ξ

e−τ
1
β 1

ϕ(t, τ, ξ)
dτ

� t2(1−β)|ξ |2 τ
1− 1

β

0 e−(τ0/2)
1
β

∫ 2τ0

τ0/2

τ
1
β
−1

(t1−β |ξ |2 − τ
1
β )2 + t2(1−β)τ 20

dτ

� t2(1−β)|ξ |2 τ
1− 1

β

0 e−(τ0/2)
1
β

∫ +∞

−∞
1

s2 + t2(1−β)τ 20
ds ≈ e−(τ0/2)

1
β
,

where we used first the change of variable s = τ
1
β − t1−β |ξ |2 and then the change of

variable r = s/(t1−βτ0). Therefore,

t2(1−β)|ξ |2
∫
It,ξ

e−τ
1
β 1

ϕ(t, τ, ξ)
dτ � 〈t1−β |ξ |2〉−M ,

for anyM ≥ 0.Comparingwith the estimate over Jt,ξ , we conclude the proof of (3.10).
��

As a straightforward consequence of (3.5) and of Lemma 3, we have the following
estimates.

Lemma 4 For any s ∈ [0, 4], we have

‖K̂1(t, ·)|ξ |s‖L∞ ≤
{
Ct−(1−β)− sβ

2 if t ≥ 1,

Ct− s
2 if t ≤ 1; (3.11)

furthermore, it holds

‖K̂0(t, ·)‖L∞ ≤ C, (3.12)

for any t ≥ 0. Moreover, for any t ≥ 1, and q ∈ [1,∞),

‖K̂1(t, ·)|ξ |s‖Lq ≤ Ct−(1−β)− nβ
2q − sβ

2 , (3.13)

provided that s + n/q < 4, and

‖K̂0(t, ·)|ξ |s‖Lq ≤ Ct−
nβ
2q − sβ

2 , (3.14)

provided that s + n/q < 2. Here C is positive constant which does not depend on t.
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We stress that since (3.11) holds for any s ∈ [0, 4], we may also write it in the form

‖K̂1(t, ·)|ξ |s〈ξ 〉4−s‖L∞ ≤ Ct−(1−β)− sβ
2 if t ≥ 1, (3.15)

‖K̂1(t, ·)〈ξ 〉s‖L∞ ≤ Ct−
s
2 if t ≤ 1, (3.16)

for any s ∈ [0, 4].
Proof For any ξ ∈ R

n and s ∈ [0, 4], we use (3.9) to obtain

|R̂1(t, ξ)|ξ |s | �
{
t−(1−β) if t ≥ 1,

t−(1−β) s2 if t ≤ 1.

On the other hand, if t ≥ 1, we get

( ∫
Rn

|R̂1(t, ξ)|ξ |s |q dξ
) 1

q � t−(1−β)
( ∫

Rn
〈ξ 〉−4q |ξ |sq dξ

) 1
q ≈ t−(1−β),

provided that s + n/q < 4. Estimate (3.12) immediately follows from (3.10). More-
over, if t ≥ 1, we get

( ∫
Rn

|R̂0(t, ξ)|ξ |s |q dξ
) 1

q �
( ∫

Rn
〈ξ 〉−2q |ξ |sq dξ

) 1
q ≤ C,

provided that s + n/q < 2. ��

4 Proof of themain results

Proof of Theorem 1 Using (3.4), we may estimate

‖u(t, ·)‖Hs = ‖〈ξ 〉s û(t, ·)‖L2 ≤ ‖K̂0(t, ·)‖L∞ ‖〈ξ 〉s û0‖L2

+
∫ t

0
‖〈ξ 〉s K̂1(t − τ, ·) ĝ(τ, ·)‖L2 dτ ;

in order to estimate the last term, we split the integral in the two domains [0, (t −1)+]
and [(t − 1)+, t]. Then, we apply estimate (3.15) in the first interval and (3.16) in the
second one:∫ t

0
‖〈ξ 〉s K̂1(t − τ, ·) ĝ(τ, ·)‖L2 dτ

≤
∫ (t−1)+

0
‖〈ξ 〉4 K̂1(t − τ, ·)‖L∞ ‖〈ξ 〉s−4 ĝ(τ, ·)‖L2 dτ

+
∫ t

(t−1)+
‖〈ξ 〉2−ε K̂1(t − τ, ·)‖L∞ ‖〈ξ 〉s+ε−2 ĝ(τ, ·)‖L2 dτ
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≤ C
∫ (t−1)+

0
(t − τ)−(1−β) ‖g(τ, ·)‖Hs−4 dτ

+ C ‖g‖L∞
t Hs+ε−2

∫ t

(t−1)+
(t − τ)−1+ ε

2 dτ.

This proves (1.8). The second part of the statement follows noticing that

∫ t

0
(t − τ)−(1−β) 〈τ 〉−β dτ

is bounded with respect to t , since β ∈ (0, 1). ��
The proof of Theorem 2 will be given throughout the following two main lemmas.

Lemma 5 Let n ≤ 3 and s ∈ [0, 2 − n/2). For any u0 ∈ Hs ∩ L1 it holds

∣∣∣∣∣∣K †
0 (t, ·) ∗ u0 −

( ∫
Rn

u0(x) dx
)
K †
0 (t, ·)

∣∣∣∣∣∣
Ḣ s

= o(t−
nβ
4 − sβ

2 ), (4.1)

as t → ∞, where K †
0 is the fundamental solution to (1.3).

Proof We follow as in [13, Lemma 4]. We first remark that, as in (3.14), with q = 2,
we have

‖K †
0 (t, ·)‖Ḣ s = t−

nβ
4 − sβ

2 ‖K †
0 (1, ·)‖Ḣ s = C t−

nβ
4 − sβ

2 , (4.2)

for any t > 0 and s ∈ [0, 2 − n/2). Morover, it holds

∣∣∣∣∣∣K †
0 (t, ·) ∗ u0 −

( ∫
Rn

u0(x) dx
)
K †
0 (t, ·)

∣∣∣∣∣∣
Ḣ s

= ‖|ξ |s K †
0 (t, ·)ρ‖L2 ,

where ρ(ξ) = û0(ξ) − û0(0). Since we are assuming u0 ∈ L1(Rn), the function
ρ is continuous and then, for any ε > 0 there exists δ sufficiently small such that
|ρ(ξ)| ≤ ε for any |ξ | < δ. Thus, on the one hand we can estimate

∫
|ξ |<δ

|ξ |2s |K̂ †
0 (t, ξ)ρ(ξ)|2 dξ � ε2‖K †

0 (t, ·)‖2Ḣ s = C ε2t−
nβ
2 −sβ, (4.3)

due to (4.2). On the other hand, applying the change of variable η = ξ t
β
2 , for t large

enough we find
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∫
|ξ |≥δ

|ξ |2s |K̂ †
0 (t, ξ)ρ(ξ)|2 dξ

�
∫

|ξ |≥δ

∣∣∣ ∫ ∞

0
e−τ

1
β |ξ |2+s t2β−1

t2β |ξ |4 + 2τ |ξ |2tβ cos(βπ) + τ 2
dτ

∣∣∣2 dξ

= t−
nβ
2 −βs+2β−2

∫
|η|≥δt

β
2

∣∣∣ ∫ ∞

0
e−τ

1
β |η|2+s

|η|4 + τ 2
dτ

∣∣∣2 dη

� t−
nβ
2 −βs+2β−2

∫
|η|≥δt

β
2

|η|−4+2s dη � ε2t−
nβ
2 −βs,

for sufficiently large t . Indeed, due to s < 2 − n/2, the last integral tends to 0 as
t → ∞. ��
Lemma 6 Let s ∈ [0, 2 − n/2). Then, it holds

‖K0(t, ·) − K †
0 (t, ·)‖Ḣ s ≤ Ct−

nβ
4 − sβ

2 −(1−β), (4.4)

for t ≥ 1, where C is a positive constant which does not depend on t.

Proof We first note that it holds

‖K0(t, ·) − K †
0 (t, ·)‖Ḣ s = t−

nβ
4 − sβ

2 ‖R0(t, ·) − K †
0 (1, ·)‖Ḣ s . (4.5)

In particular, we have

R̂0(t, ξ) − K̂ †
0 (1, ξ) = sin(βπ)

βπ

∫ ∞

0
e−τ

1
β
ψ(τ, ξ) dτ,

where

ψ(τ, ξ) = |ξ |2τ 1
β (2t1−β |ξ |2 − τ

1
β + 2τ t1−β cos(βπ))

ϕ(t, τ, ξ)(|ξ |4 + 2τ |ξ |2 cos(βπ) + τ 2)
.

By using (3.8), on the one hand, being t1−β |ξ |2 ∼ τ
1
β in It,ξ for any t ≥ 1 we can

estimate

|ψ(τ, ξ)| � t−(1−β)(τ
2
β + τ

1+ 1
β )

τ 2(|ξ |4 + τ 2)
1
2

� t−(1−β)〈ξ 〉−2τ−pβ , if τ ∈ It,ξ ,

for some pβ > −1; on the other hand, for any t ≥ 1 we have

|ψ(τ, ξ)| � t−(1−β)τ
1
β (|ξ |2 + τ

1
β + τ)

(|ξ |4 + τ 2)
3
2

� t−(1−β)〈ξ 〉−2τ−qβ , if τ ∈ Jt,ξ ,
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for some qβ > −1.
As a consequence, we can easily conclude

‖R0(t, ·) − K †
0 (1, ·)‖Ḣ s � t−(1−β),

since n < 4 − 2s. The proof of the desired result follows by identity (4.5). ��
Proof of Theorem 2 The solution to (1.1) is in Cb([0,∞), Hs) thanks to Theorem 1.
By using (3.4), on the one hand, we may estimate

‖u(t, ·)‖Ḣ s ≤ C(1 + t)−
nβ
4 − sβ

2 (‖u0‖Ḣ s + ‖u0‖L1)

+
∫ t

0
‖|ξ |s K̂1(t − τ)ĝ(τ, ·)‖L2 dτ ; (4.6)

here, we used (3.12) for t ≤ 1 and (3.14), together with Plancherel and Riemann-
Lebesgue theorem, for t > 1; on the other hand, we have

‖u(t, ·) − MK †
0 (t, ·)‖Ḣ s = ‖|ξ |s (û(t, ·) − MK̂ †

0 (t, ·))‖L2

≤ ‖|ξ |s (K̂0(t, ·)û0 − MK̂ †
0 (t, ·))‖L2

+
∫ t

0
‖|ξ |s K̂1(t − τ, ·)ĝ(τ, ·)‖L2 dτ. (4.7)

Recalling that s < 2 − n/2, we use Plancherel and Riemann-Lebesgue theorem
together with Lemmas 5 and 6 to conclude that

‖|ξ |s (û(t, ·) − MK̂ †
0 (t, ·))‖L2 � ‖K0(t, ·) − K †

0 (t, ·)‖Ḣ s‖u0‖L1

+ ‖K †
0 (t, ·) ∗ u0 − MK †

0 (t, ·)‖Ḣ s = o(t−
nβ
4 − sβ

2 ).

It remains to estimate the integral term in (4.6) and (4.7): let t ≤ T , with T > 0
arbitrarily large; then, as a consequence of assumption (1.12) and estimate (3.11) we
obtain ∫ t

0
‖|ξ |s K̂1(t − τ, ·)ĝ(τ, ·)‖L2 dτ ≤ B1

∫ t

0
(t − τ)−1+ ε

2 dτ ≤ CB1; (4.8)

Let us consider now t > T ; we separately estimate three integrals:

I1 =
∫ t/2

0
‖|ξ |s K̂1(t − τ, ·)ĝ(τ, ·)‖L2 dτ,

I2 =
∫ t−1

t/2
‖|ξ |s K̂1(t − τ, ·)ĝ(τ, ·)‖L2 dτ,

I3 =
∫ t

t−1
‖|ξ |s K̂1(t − τ, ·)ĝ(τ, ·)‖L2 dτ.
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Due to s < 2, using (3.15), we may estimate

I2 ≤
∫ t−1

t/2
‖|ξ |s 〈ξ 〉4−s K̂1(t − τ, ·)‖L∞ ‖〈ξ 〉s−4 ĝ(τ, ·)‖L2 dτ

≤ C
∫ t−1

t/2
(t − τ)−(1−β)− sβ

2 ‖g(τ, ·)‖Hs−4 dτ

≤ CB1〈t〉− n
4 β−β

∫ t−1

t/2
(t − τ)−(1−β)− sβ

2 dτ ≤ CB1〈t〉− n
4 β− sβ

2 . (4.9)

Similarly, if we assume that

n

4
β + β < 1, (4.10)

then, using (3.15), we may estimate

I1 ≤
∫ t/2

0
‖|ξ |s 〈ξ 〉4−s K̂1(t − τ, ·)‖L∞ ‖〈ξ 〉s−4 ĝ(τ, ·)‖L2 dτ

≤ C
∫ t/2

0
(t − τ)−(1−β)− sβ

2 ‖g(τ, ·)‖Hs−4 dτ

≤ CB1 t
−(1−β)− sβ

2

∫ t/2

0
〈τ 〉− n

4 β−β dτ ≤ CB1 t
− nβ

4 − sβ
2 . (4.11)

If (4.10) does not hold, that is, (1.10) holds, using (3.15) we may estimate

I1 ≤
∫ t/2

0
‖|ξ |s+a 〈ξ 〉4−s−a K̂1(t − τ, ·)‖L∞ ‖|ξ |−a〈ξ 〉s+a−4ĝ(τ, ·)‖L2 dτ,

where a is as in (1.11). By the Hardy-Littlewoow-Sobolev theorem,

‖|ξ |−a f̂ ‖L2 = ‖Ia f ‖L2 ≤ C ‖ f ‖Lq ,

provided that q ∈ (1, 2), where a is as in (1.11). Therefore,

‖|ξ |−a〈ξ 〉s+a−4ĝ(τ, ·)‖L2 ≤ C ‖g(τ, ·)‖Hs−4+a,q .

We obtain

I1 ≤ C
∫ t/2

0
(t − τ)

−(1−β)− sβ
2 − n

2 β
(
1
q − 1

2

)
‖g(τ, ·)‖Hs−4+a,q dτ

≤ CB2 t
−(1−β)− sβ

2 − n
2 β

(
1
q − 1

2

) ∫ t/2

0
〈τ 〉− n

2 β
(
1− 1

q

)
−β

dτ ≤ CB2 t
− nβ

4 − sβ
2 . (4.12)
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Due to s < 2, by using estimate (3.16), we obtain

I3 ≤
∫ t

t−1
‖|ξ |s 〈ξ 〉2−s−ε K̂1(t − τ, ·)‖L∞ ‖〈ξ 〉s−2+ε ĝ(τ, ·)‖L2 dτ

≤ C
∫ t

t−1
(t − τ)−1+ ε

2 ‖g(τ, ·)‖Hs−2+ε dτ

≤ CB1 t
− nβ

4 − sβ
2

∫ t

t−1
(t − τ)−1+ ε

2 dτ ≤ CB1 t
− nβ

4 − sβ
2 . (4.13)

As a consequence, by (4.6) we conclude

‖u(t, ·)‖Hs ≤ C(1 + t)−
nβ
4 − sβ

2 (‖u0‖Hs∩L1 + B1 + B2).

Moreover, if lim supt→∞ Q1(t) = 0 and, in addition, lim supt→∞ Q2(t) = 0 when
(1.10) holds, then we can also conclude

‖u(t, ·) − MK †
0 (t, ·)‖Ḣ s = o(t−

nβ
4 − sβ

2 ),

as a consequence of (4.7); indeed, for any ε > 0 we can choose T > 0 sufficiently
large such that for any t > T /2

‖g(t, ·)‖Hs−4 ≤ ε〈t〉− nβ
4 −β, ‖g(t, ·)‖Hs−2+ε ≤ ε〈t〉− nβ

4 − sβ
2 ,

and

‖g(t, ·)‖Hs−4+a,q ≤ ε〈t〉− nβ
2 (1− 1

q )−β
,

where a and q are as in (1.11); then, estimates (4.9) and (4.13) still hold replacing B1
and B2 by ε. Additionally, if (4.10) holds we can estimate

I1 ≤ Ct−(1−β)− sβ
2

(
B1

∫ T /2

0
〈τ 〉− nβ

4 −β dτ + ε

∫ t

T /2
〈τ 〉− nβ

4 −β dτ
)

≤ CB1 t
−(1−β)− sβ

2 + Cεt−
nβ
4 − sβ

2 ≤ C1εt
− nβ

4 − sβ
2 ,

due to condition (4.10); similarly, if (4.10) does not hold we have

I1 ≤ C t
−(1−β)− sβ

2 − n
2 β

(
1
q − 1

2

) (
B2

∫ T /2

0
〈τ 〉− n

2 β
(
1− 1

q

)
−β

dτ

+ ε

∫ t

T /2
〈τ 〉− n

2 β
(
1− 1

q

)
−β

dτ
)

≤ CB2 t
−(1−β)− sβ

2 − n
2 β

(
1
q − 1

2

)
+ Cεt−

nβ
4 − sβ

2 ≤ C1εt
− nβ

4 − sβ
2 ,

as a consequence of condition (1.11). This completes the proof of Theorem 2. ��
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We now prove Corollary 1.

Proof of Corollary 1 We equip the evolution space X(T ) = Cb([0, T ], Hs) with the
norm

‖u‖X(T ) = sup
0≤t≤T

(1 + t)
nβ
4

(‖u(t, ·)‖L2 + (1 + t)
sβ
2 ‖u(t, ·)‖Ḣ s

)
,

and we define the operator

N : u ∈ X(T ) → Nu(t, x) = K0(t, ·) ∗ u0 + Fu(t, ·),

where

Fu(t, ·) =
∫ t

0
K1(t − τ, ·) ∗ f (u(τ, ·)) dτ.

We will prove the existence of the unique global (in time) solution to (1.17) as the
fixed point of the operator N . Hence, in order to get the global (in time) existence
and uniqueness of the solution in X(T ), we need to prove the following two crucial
estimates:

‖Nu‖X(T ) ≤ C ‖u0‖L1∩Ḣ s + ‖u‖p
X(T ), (4.14)

‖Nu − Nv‖X(T ) ≤ C ‖u − v‖X(T )

(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
, (4.15)

with C > 0, independent of T .
As a consequence of Banach’s fixed point theorem, the conditions (4.14) and (4.15)

guarantee the existence of a uniquely determined solution u to (1.17). We simultane-
ously gain a local and a global (in time) existence result.

Indeed, let R > 0 be such thatCRp−1 < 1/2. Then N is a contraction on XR(T ) =
{u ∈ X(T ) : ‖u‖X(T ) ≤ R}, thanks to (4.15). The solution to (1.17) is a fixed point
for N , so if ‖K0(t, ·) ∗(x) u0‖X(T ) ≤ R/2, then u ∈ XR(T ), thanks to (4.14). As a
consequence, the uniqueness and existence of the solution in XR(T ) follows by the
Banach fixed point theorem on contractions. The condition ‖K0(t, ·) ∗(x) u0‖X(T ) ≤
R/2 is obtained taking initial data verifying ‖u0‖L1∩Hs ≤ ε, with ε such that Cε ≤
R/2. Since C , R and ε do not depend on T , the solution is global (in time).

Let us prove estimates (4.14) and (4.15).
For any u ∈ X(T ), by Gagliardo-Nirenberg inequality, we obtain

‖u‖Lr ≤ (1 + t)
− n

2 β
(
1− 1

r

)
‖u‖X(T ), r ∈ [2, 2p],

since Hs ↪→ L2p. Therefore, for any u, v ∈ X(T ), the function

g(t, x) = f (u(t, x)) − f (v(t, x))
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verifies the estimate

‖g(t, ·)‖Lq ≤ C ‖(u − v)(t, ·)‖Lqp
(‖u(t, ·)‖p−1

Lqp + ‖v(t, ·)‖p−1
Lqp

)
≤ C ′ (1 + t)

−(p−1) n2 β− n
2 β

(
1− 1

q

)
‖u − v‖X(T )

(‖u‖p−1
X(T ) + ‖v‖p−1

X(T )

)
,

for any q ∈ [1, 2]. Due to p ≥ 1 + 2/n, we obtain

‖g(t, ·)‖Lq = ‖u − v‖X(T )

(‖u‖p−1
X(T ) + ‖v‖p−1

X(T )

)
t
− nβ

2

(
1− 1

q

)
−β

.

Thus, (1.15) holds and we can apply Theorem 2. Thus, (1.13) implies estimate
(4.14) and, taking u0 ≡ 0 in (1.13) we obtain (4.15).

In particular, if p > 1 + 2/n we have

‖g(t, ·)‖Lq = ‖u − v‖X(T )

(‖u‖p−1
X(T ) + ‖v‖p−1

X(T )

)
o(t

− nβ
2

(
1− 1

q

)
−β

),

and then, we prove (1.20) as a consequence of (1.14). ��

5 Conclusions

In Theorem1,we provided sufficient conditions for the non-homogeneous term g(t, x)
which allow to obtain the boundness of the solution to (1.1) in Hs ; then, we describe
its asymptotic profile in Theorem 2, showing that it is independent of g, provided that
g(t, ·) satisfies some additional decay assumptions. This latter effect is related to the
special structure of the solution to the Cauchy-type problem for equations with Caputo
fractional derivatives, in relation to the non-homogeneous term g(t, x).

There exist many functions g(t, ·) which satisfy the desired conditions. Let us test
the assumptions of Theorem 1 for the special class of auto-similar g:

g(t, x) = tγ h(t
2γ
n x), for some γ > 0 and for any t > 0.

Let h ∈ L1 ∩ L2 and s < min{4 − n/2, 2}. In particular, g ∈ L∞
t L2, since

‖g(t, ·)‖L2 = tγ ‖h(t
2γ
n ·)‖L2 = ‖h‖L2 .

On the other hand, for any t > 0 it holds

‖g(t, ·)‖L1 = tγ ‖h(t
2γ
n ·)‖L1 = t−γ ‖h‖L1 .

Therefore, we can estimate

‖g(t, ·)‖Hs−4 ≤ ‖g(t, ·)‖Hs−2+ε ≤ ‖g‖L∞
t L2

x
= ‖h‖L2 , (5.1)
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for any t > 0 (here ε is sufficiently small, namely ε ≤ 2 − s); on the other hand, for
any t > 1 we may produce a decay rate t−γ , by the estimate

‖g(t, ·)‖Hs−4 ≤ ‖〈ξ 〉s−4‖L2‖ĝ(t, ·)‖L∞

≤ ‖〈ξ 〉s−4‖L2‖g(t, ·)‖L1 = C(n, s) t−γ ‖h‖L1 ,

where C(n, s) is finite, due to the assumption s < 4 − n/2. Therefore, if γ ≥ β,
Theorem 1 may be applied with

A = sup
t≥0

〈t〉β‖g(t, ·)‖Hs−4 � ‖h‖L1∩L2 ,

so that we get the estimate

‖u‖L∞
t Hs ≤ C

(‖u0‖Hs + ‖h‖L1∩L2
)
.

In high space dimension n ≥ 5, it may happen that 4 − n/2 ≤ s < 2. In this latter
case, let r ∈ (2,∞) be such that r(4 − s) > n, and fix m ∈ (1, 2) be such that

1

2
= 1

r
+ 1

m′ , i.e.
1

r
= 1

m
− 1

2
.

Then we may produce a decay rate t
−2γ

(
1
m − 1

2

)
for any t > 1, by the estimate

‖g(t, ·)‖Hs−4 ≤ ‖〈ξ 〉s−4‖Lr ‖ĝ(t, ·)‖Lm′

� ‖〈ξ 〉s−4‖Lr ‖g(t, ·)‖Lm = C(n, s,m) t
−2γ

(
1
m − 1

2

)
‖h‖Lm ,

where C(n, s,m) is finite, due to the assumption r(4 − s) > n. Therefore, if
2γ

( 1
m − 1

2

) ≥ β, Theorem 1 applies. Given a fixed s and n, such m exists if 2γ ≥ rβ
for some r > n/(4 − s), that is, if 2γ > nβ/(4 − s).

One may proceed with similar reasoning to test the assumptions of Theorem 2 for
a self-similar g.

One could also investigate the possibility to take g(t, ·) in different functional
spaces; for instance, following the proof of Theorem 1 one could also prove that u is
in Cb([0,∞), Hs) and

‖u‖L∞
t Hs ≤ C

(‖u0‖Hs + A
) + Cε‖g‖

L∞
t H

s−2+ε+n
(
1
2− 1

q

)
,q ,

assuming

g ∈ L∞
t H

s−2+ε+n
(
1
2− 1

q

)
,q ∩ L∞

t H
s−4+ε+n

(
1
2− 1

r

)
,r
,
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and

A = sup
t≥0

〈t〉
(
β− nβ

4 + nβ
2r

)
+‖g‖

L∞
t H

s−4+ε+n
(
1
2− 1

r

)
,r < ∞,

for some q ∈ [1, 2n/(n − 4)+] and r ≥ 1.
The validity of ourmain results could be discussed also for theCauchy-type problem

associated to a more general fractional differential equation in the form

∂α
t u + ∂

β
t u − Δu = g(t, x), t > 0, x ∈ R

n,

with 0 < β < α < 2. On the one hand, if both α and β belong to (0, 1), then
one can apply the same approach used in the present paper to investigate the Hs-
boundness of the associated Cauchy-type problem and the asymptotic profile of its
solution, assuming the initial data u0 = u(0, ·) to be integrable; on the other hand,
if 0 < β < 1 < α < 2 new difficulties arise; in particular, the solution to the
corresponding fractional ODE

∂α
t y + ∂

β
t y + λy = ĝ, y(0) = c0, y′(0) = c1,

can be represented as

y(t) = c0H0(t) + c1H1(t) +
∫ t

0
ĝ(t − τ)H2(τ ) dτ,

where

H0(t) := L−1
(
sα−1 + sβ−1

h(s)

)
(t), H1(t) := L−1

(
sα−2

h(s)

)
(t),

H2(t) := L−1
(

1

h(s)

)
(t),

with h(s) := sα +sβ +λ. Here, unlike the case α, β ∈ (0, 1) one need to take account
of the roots of h(s) in the complex plane in the derivation of an integral representation
of the kernels Hi , i = 0, 1, 2. The study of these and other evolution models with
multi-term time-fractional derivatives will be object of future investigations.
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