This article presents a fully discrete entropy conserving/stable method based on a Discontinuous Galerkin (DG) discretization in entropy variables coupled with a modified Crank-Nicolson scheme. The entropy conserving time integration is inspired by the work of LeFloch [1], originally developed in the context of a Finite Volume method in conservative variables. This entropy conserving time integrator is here adapted to a DG discretization in entropy variables also demonstrating the fulfilment of entropy conservation regardless of the time step size and the type of elements used (quadrangular or triangular elements, possibly with curved edges). The performance of the implicit method will be demonstrated by computing several inviscid flow problems, i.e., the convection of an isentropic vortex, the double shear layer, the Kelvin-Helmholtz instability, the shedding flow past a triangular wedge, the Sod shock tube, the receding flow and the Taylor-Green vortex.(c) 2022 Elsevier Inc. All rights reserved.

Entropy conserving implicit time integration in a Discontinuous Galerkin solver in entropy variables / Colombo, A; Crivellini, A; Nigro, A. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - 472:(2023). [10.1016/j.jcp.2022.111683]

Entropy conserving implicit time integration in a Discontinuous Galerkin solver in entropy variables

Crivellini, A
;
Nigro, A
2023-01-01

Abstract

This article presents a fully discrete entropy conserving/stable method based on a Discontinuous Galerkin (DG) discretization in entropy variables coupled with a modified Crank-Nicolson scheme. The entropy conserving time integration is inspired by the work of LeFloch [1], originally developed in the context of a Finite Volume method in conservative variables. This entropy conserving time integrator is here adapted to a DG discretization in entropy variables also demonstrating the fulfilment of entropy conservation regardless of the time step size and the type of elements used (quadrangular or triangular elements, possibly with curved edges). The performance of the implicit method will be demonstrated by computing several inviscid flow problems, i.e., the convection of an isentropic vortex, the double shear layer, the Kelvin-Helmholtz instability, the shedding flow past a triangular wedge, the Sod shock tube, the receding flow and the Taylor-Green vortex.(c) 2022 Elsevier Inc. All rights reserved.
2023
File in questo prodotto:
File Dimensione Formato  
Colombo_Entropy-conserving-implicit_VoR_2023.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 6.82 MB
Formato Adobe PDF
6.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Colombo_Entropy-conserving-implicit_Aam_2023.pdf

Open Access dal 15/10/2024

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Creative commons
Dimensione 46.02 MB
Formato Adobe PDF
46.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/314174
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact