In this work, we use variational methods to prove the existence of heteroclinic and saddle type solutions for a class of quasilinear elliptic equations of the form $-\Delta_\Phi(u)+A(x,y)V'(u)=0$, $(x,y)\in\R^2$, where $\Phi:\R\to[0,+\infty)$ is an N-function, $A:\R^2\to\R$ is a periodic positive function and $V:\R\to\R$ is modeled on the Ginzburg-Landau potential.

Existence of heteroclinic and saddle-type solutions for a class of quasilinear problems in whole ℝ2 / Alves, Claudianor O.; Isneri, Renan J. S.; Montecchiari, Piero. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - STAMPA. - (2022). [10.1142/S0219199722500614]

Existence of heteroclinic and saddle-type solutions for a class of quasilinear problems in whole ℝ2

Montecchiari, Piero
2022-01-01

Abstract

In this work, we use variational methods to prove the existence of heteroclinic and saddle type solutions for a class of quasilinear elliptic equations of the form $-\Delta_\Phi(u)+A(x,y)V'(u)=0$, $(x,y)\in\R^2$, where $\Phi:\R\to[0,+\infty)$ is an N-function, $A:\R^2\to\R$ is a periodic positive function and $V:\R\to\R$ is modeled on the Ginzburg-Landau potential.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/312007
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact