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EXISTENCE OF HETEROCLINIC AND SADDLE TYPE SOLUTIONS FOR

A CLASS OF QUASILINEAR PROBLEMS IN WHOLE R2

CLAUDIANOR O. ALVES, RENAN J. S. ISNERI, AND PIERO MONTECCHIARI

Abstract. In this work, we use variational methods to prove the existence of heteroclinic
and saddle type solutions for a class quasilinear elliptic equations of the form

−∆Φu + A(x, y)V ′(u) = 0 in R2,

where Φ : R → [0,+∞) is a N-function, A : R2 → R is a periodic positive function and
V : R → R is modeled on the Ginzburg Landau potential. In particular our main result
includes the case of the potential V (t) = Φ(|t2− 1|), which reduces to the classical double well
Ginzburg-Landau potential when Φ(t) = |t|2, that is, when we are working with the Laplacian
operator.

1. Introduction

The problem of existence and classification of bounded solutions of stationary Allen Cahn
type equations

−∆u+A(x)V ′(u) = 0 x ∈ Rn, u ∈ R (E1)

has been widely studied in the last years, providing a rich amount of differently shaped families
of solutions. The Allen-Cahn equation was introduced in 1979 by Allen and Cahn in [12] as a
model for phase transitions in binary alloys. The standard model of V is the classical double well
Ginzburg-Landau potential V (u) = (u2 − 1)2. The function u is a phase parameter describing
pointwise the state of the material and the global minima of V represent energetically favorite
pure phases. Different values of u depict mixed configurations and by transition solutions we
mean entire solutions of (E1) which are asymptotic in different directions to the pure phases of
the systems. In the equation (E1) the presence of the (positive) oscillatory factor A(x) models
an inhomogeneous behavior of the system.

When A is a positive constant function (e.g. A(x) = 1), a long standing problem is to
characterize the set of the solutions u ∈ C2(Rn) of (E1) satisfying |u(x)| ≤ 1 and ∂x1u(x) > 0.
This problem was pointed out by De Giorgi in [25], where he conjectured that, when n ≤ 8
and V (s) = (s2− 1)2, the whole set of these solutions reduces, modulo space roto-translations,
to the unique solution q+ ∈ C2(R) of the one dimensional problem:

−q̈(x) + V ′(q(x)) = 0, q(0) = 0 and q(±∞) = ±1.

The conjecture has been firstly proved in the planar case by Ghoussoub and Gui in [40] even
for more general double well potential V . In the case n = 3 it has been proved in [15] and,
assuming u(x) → ±1 as x1 → ±∞, the same rigidity result has been obtained in dimension
n ≤ 8 in [53], paper to which we refer also for an extensive bibliography on the argument.
Del Pino, Kowalczyk and Wei showed in [28, 29] that the 1-D symmetry of these solutions is
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generally lost when n ≥ 9. We refer also to [17, 19, 31], where a weaker version of the De
Giorgi conjecture, known as Gibbons conjecture, has been obtained for all the dimensions n
and in more general settings. These results show that when A is a positive constant and u
is a bounded solution of (E1) satisfying u(x) → ±1 as x1 → ±∞ uniformly with respect to
(x2, . . . , xn) ∈ Rn−1 then u(x) = q+(x1).

This kind of heteroclinic type transition solutions persist when A is not constant. The
heteroclinic type problem was first studied by variational methods for more general elliptic
equations of the type

−∆u = g(x, y, u) in x ∈ R, y ∈ Ω, u ∈ R, (E2)

by Rabinowitz in [47], when Ω is a bounded regular domain on Rn. Assuming the nonlinearity g
to be even and periodic in the variable x, Rabinowitz showed the existence of solutions of (E2)
in R × Ω satisfying Dirichlet or Neumann boundary condition on ∂Ω and being asymptotic
as x → ±∞ to different minimal solutions u±, periodic in the variable x. This result was
generalized by Alves in [13] for different conditions on g, including the case in which g is only
asymptotically periodic in the variable x. A related variational approach was used to study the
heteroclinic type problem for equation (E1) in the case in which A is periodic in its variable
in [3,48,49], showing the existence of (minimal) solutions u(x) which are periodic in the variable
(x2, . . . xn) and such that u is asymptotic to different minima of the potential V as x1 → ±∞.
Starting from the existence of this “basic” heteroclinic solutions, these papers show how the
presence of a truly oscillatory factor A(x, y) gives generically the existence of complex classes of
other heteroclinic type transition solutions in contrast with the above described rigidity results
characterizing the autonomous case (see also [11,18,50]).

Another kind of transition solutions for (E1) was introduced by Dang, Fife and Peletier
in [24]. In the planar case n = 2, when V is an even double well potential and A is a positive
constant, they showed by a sub-supersolution method that (E1) has a unique bounded solution
u ∈ C2(R2) with the same sign as x1x2, odd in both the variables x1 and x2 and symmetric with
respect to the diagonals x2 = ±x1. Along any directions not parallel to the coordinate axes the
saddle solution u is asymptotic to the minima of the potential V representing a phase transition
with cross interface. Note that, even if it is related to minimal transition heteroclinic solutions,
being asymptotic to q+ as x2 → +∞, it no longer has minimal character (see [44, 54]). Many
extensions for Allen-Cahn models have been considered. In the planar case we refer to [8] for
a variational study of saddle type solutions with dihedral symmetries of order k (see also [43]
for a global variational approach to the saddle problem) and to [30, 41] for a general study
regarding k-end solutions. In higher dimension we mention [5, 6, 21, 22, 46] for the equations
case and to [2, 7, 42] for the case of systems of autonomous Allen-Cahn equations.

The analogous for saddle solutions for (E1) in the planar case, when A ∈ C(R2) is positive,
even, periodic and symmetric with respect to the plane diagonal x2 = x1, i,e, when A satisfies

(A1) A is a continuous function and A(x, y) > 0 for each (x, y) ∈ R2,
(A2) A(x, y) = A(−x, y) = A(x,−y) for all (x, y) ∈ R2,
(A3) A(x, y) = A(x+ 1, y) = A(x, y + 1) for any (x, y) ∈ R2,
(A4) A(x, y) = A(y, x) for all (x, y) ∈ R2,

has been introduced in [9] where a variational procedure was introduced to find as in the
autonomous case a solution u of (E1) on R2 which is odd with respect to both its variables,
symmetric with respect to the diagonal, strictly positive on the first quadrant and is asymptotic
to the minima of V along any directions not parallel to the coordinate axes. Moreover in [9]
it is shown that, as y → +∞ (uniformly w.r.t. x ∈ R), the solution u is asymptotic to the set
of the x-odd minimal heteroclinic type solutions of (E1) which are periodic in the variable y
described above.
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In the recent paper [14], motivated by results found in [8], we tackled the problem of existence
of saddle solutions for the analogous of Allen Cahn model in the autonomous quasilinear setting.
More precisely given an N-function Φ : R→ [0,+∞) of the form

(1.1) Φ(t) =

∫ |t|
0

sφ(s)ds

for a φ ∈ C1([0,+∞), [0,+∞)) such that:

(φ1) there exist l,m ∈ R such that 1 < l ≤ m and

l ≤ φ(t)t2

Φ(t)
≤ m, ∀t > 0,

(φ2) φ(t) > 0 and (φ(t)t)′ > 0 for any t > 0,
(φ3) φ is non-decreasing,
(φ4) there exists κ > 0 such that

φ(|t|) + φ′(|t|)|t| ≤ κφ(|t|), ∀t ∈ R,

(φ5) there is M > 0 such that (φ(t)t)′ ≥Mφ(t) for all t > 0,

and a potential V ∈ C2(R,R) verifying:

(V1) V (t) ≥ 0 for all t ∈ R and V (t) = 0 ⇔ t = −1, 1,
(V2) V (−t) = V (t) for any t ∈ R,
(V3) there are δ1 ∈ (0, 1) and w1, w2 > 0 such that

w1Φ(|t− 1|) ≤ V (t) ≤ w2Φ(|t− 1|), ∀t ∈ (1− δ1, 1 + δ1),

(V4) there exists ω > 0 such that

V ′(t) ≤ −ωφ(|1− t|)|1− t|t, ∀t ∈ [0, 1],

(V5) there is δ0 > 0 such that V ′ is increasing on (1− δ0, 1),

(V6) there are γ > 0 and ε > 0 such that Φ̃(V ′(t)) ≤ γΦ(|1− t|) for all t ∈ (1− ε, 1)

we considered the related quasilinear Allen Cahn model

−∆Φu+ V ′(u) = 0 in R2. (E3)

where ∆Φu = div (φ (|∇u|)∇u). Note that the potential V (t) = Φ(|t2− 1|) satisfies (V1)− (V6)
and so (E3) reduces to (E1) in the case Φ(t) = |t|2 and V (t) = (t2 − 1)2.

In [14], we refined and adapted the variational procedure introduced in [9] to show that, like
in the Laplacian case, (E3) admits transition heteroclinic type solutions and, for each integer
number k ≥ 2, a related saddle-type solution with dihedral symmetries of order k.

In recent years, facing the need of a mathematical description of advanced physical problems
there has been a growing number of works involving the Φ-laplacian operator ∆Φ and its theory
is by now rather developed. As a first example we may consider the case

Φ(t) = |t|p, t ∈ R, p ∈ (1,+∞),

which is related to the celebrated p-Laplacian operator that often appears in physical models,
for example in Newtonian and non-Newtonian fluids (see [26, 27] and references therein).
Motivated by concrete examples of equations arising in fluid mechanics and plasticity theory,
Seregin and Fuchs in [34, 35] (see also [33]) were led to the minimization of integrals where
appears the logarithmic model

Φ(t) = |t|p ln(1 + |t|), t ∈ R, p ∈ [1,+∞),
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which is an N -function of the type (1.1). Other model of N -function of the form (1.1) that
often arises in a lot of fields of physics and related sciences such as biophysics and chemical
reaction design is

Φ(t) =
1

p
|t|p +

1

q
|t|q, t ∈ R, 1 < p < q < +∞.

The differential operator associated with this N -function is known as the (p, q)-Laplacian
operator and the prototype for these models can be written in the form

ut = −∆Φ + f(x, u).

In this configuration, the function u generally describes a concentration, ∆Φ corresponds to
the diffusion and f(x, u) is the reaction term that corresponds to source and loss processes.
For a quite comprehensive account, the interested reader might start by referring to [16, 32].
Finally, it is worth mentioning that the N -function of the form (1.1)

Φ(t) = (1 + t2)γ − 1, t ∈ R, γ > 1,

appears in the works [38, 39], where the authors report that studies of quasilinear equations
involving the associated operator ∆Φ are motivated by nonlinear elasticity models. For other
examples of N -functions of the type (1.1) and more applications we refer the reader to [33,36]
and the bibliography therein.

In the present paper we continue the study initiated in [14] studying the existence of
heteroclinic and related saddle-type weak solutions of the non autonomous version of equation
(E3)

−∆Φu+A(x, y)V ′(u) = 0 in R2, (PDE)

where A is a symmetric positive periodic function satisfying (A1)− (A4).
As a first step in the present study we use variational methods related to the ones introduced

in [9] and [14], to establish the existence of (minimal) heteroclinic type solutions of (PDE), i.e.

weak solutions v ∈ C1,α
loc (R2) which are 1 - periodic in the variable y and such that

v(x, y)→ −1 as x→ −∞ and v(x, y)→ 1 as x→ +∞, uniformly in y ∈ R.

Here we borrow some ideas developed in [9] and [47] to look for minima of the action functional

I(u) =

∫
R

∫ 1

0
(Φ(|∇u|) +A(x, y)V (u)) dydx,

on the class

E =
{
u ∈W 1,Φ

loc (R× [0, 1]) : 0 ≤ u(x, y) ≤ 1 for x > 0 and u is odd in x
}
,

where W 1,Φ
loc (R × [0, 1]) denotes the usual Orlicz-Sobolev space. Denoting by K the set of

minima of I on E, we show that K is not empty and constituted by (minimal) heteroclinic
type solutions of (PDE).

The minimality properties of these heteroclinic type solutions allows us, as a second step, to
build up a variational framework inspired to the one introduced in [9] to detect the existence
of saddle type solution of (PDE), characterizing their the asymptotic behavior.

More precisely we have the following results:

Theorem 1.1. Assume (φ1)-(φ2), V ∈ C1(R,R), (V1)-(V3) and (A1)-(A3). There exists

v ∈ C1,α
loc (R2), a weak solution of (PDE) that verifies the following:

(a) v(x, y) = −v(−x, y), for all (x, y) ∈ R2;
(b) v(x, y) = v(x, y + 1), for any (x, y) ∈ R2;
(c) 0 < v(x, y) < 1 for each x > 0 and y ∈ R.
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Moreover, v is a heteroclinic solution from -1 to 1.

Theorem 1.2. Assume (φ1)-(φ4), V ∈ C1(R,R), (V1)-(V4) and (A1)-(A4). There exists

v ∈ C1,α
loc (R2), a weak solution of (PDE) that verifies the following:

(a) v(x, y) > 0 on the fist quadrant in R2;
(b) v(x, y) = −v(−x, y) = −v(x,−y) for all (x, y) ∈ R2;
(c) v(x, y) = v(y, x) for any (x, y) ∈ R2;
(d) There is u0 ∈ K such that ‖v − τju0‖L∞(R×[j,j+1]) → 0 as j → +∞,

where τju0(x, y) = u0(x, y − j) for all (x, y) ∈ R2.

The item (d) of Theorem 1.2 characterizes the asymptotic behavior of v. It guarantees that
along directions parallel to the coordinate axes the saddle solution is asymptotic to (rotated
of) the minimal heteroclinic set K. This implies that along any direction not parallel to the
coordinate axes v is asymptotic at infinity to ±1 and so, the saddle solution can be seen as a
phase transition solution with cross interface.

We point out that Theorems 1.1, 1.2, improve the results in [14] not only in the fact that the
function A is allowed to be not constant but also because, unlike in [14], the assumptions (φ5)
and (V5)-(V6) are not needed. Moreover we note that even though the variational approach is
inspired by the one used in [9], many tools used in the classical Laplacian context, such as for
example some maximum principles, C2 regularity, existence and local uniqueness theorems, are
no more available in the present framework. The proofs of our results require new estimates
based on the Harnack type inequalities found in [55] and on results about C1,α regularity for
quasilinear problems as obtained by Liberman in [45].

This paper is organized as follows. In Section 2, we prove Theorem 1.1, while in Section 3
we show some compactness properties. We build up in Section 5 a renormalized minimization
procedure inspired by the one used in [9, 10] (see also [8]) that takes into account refined
properties studied in Sections 3 and 4, and then the proof of Theorem 1.2 is given. Finally, we
write an Appendix A about some facts involving Orlicz–Sobolev spaces for unfamiliar readers
with the topic.

2. Existence of Heteroclinic Solutions

In this section, we show the existence of a heteroclinic solution from -1 to 1 for the quasilinear
problem (PDE). To begin with, for Ω0 = R× [0, 1] let us consider the set

E =
{
u ∈W 1.Φ

loc (Ω0) : 0 ≤ u(x, y) ≤ 1 for x > 0 and u is odd in x
}
.

In the sequel, I : W 1,Φ
loc (Ω0)→ R ∪ {+∞} designates the functional given by

I(u) =

∫
Ω0

(Φ(|∇u|) +A(x, y)V (u)) dydx.

An direct computation shows that

(2.1) un ⇀ u in W 1,Φ
loc (Ω0)⇒ I(u) ≤ lim inf

n→+∞
I(un).

Hereinafter, the expression un ⇀ u in W 1,Φ
loc (Ω0) means that un ⇀ u in W 1,Φ([L,R]× [0, 1]) for

every R,L ∈ R with L < R. Setting

L(u) = Φ (|∇u|) +A(x, y)V (u), u ∈W 1,Φ
loc (Ω0),

it follows from the definitions of Φ, V and A that

L(u) ≥ 0, ∀u ∈ E,
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and so, the functional I is bounded from below. Now, it is easy to check that the function
ϕ∗ : Ω0 → R defined by

(2.2) ϕ∗(x, y) =

 1, if x > 1 and y ∈ [0, 1],
x, if − 1 ≤ x ≤ 1 and y ∈ [0, 1],
−1, if x < −1 and y ∈ [0, 1]

belongs to E with I(ϕ∗) < +∞. Therefore, the real number

c := inf
u∈E

I(u)

is well defined.
From now on, for each x ∈ R fixed and u ∈ E, we will identify u(x, ·) as being a real function

in y ∈ [0, 1]. For each y ∈ [0, 1] fixed, we will also identify u(·, y) as being a real function in
x ∈ R. Employing Fubini’s Theorem, it follows that

u(x, ·) ∈W 1,Φ(0, 1) a.e. in x ∈ R and u(·, y) ∈W 1,Φ
loc (R) a.e. in y ∈ [0, 1].

Finally, since the functions in E have L∞-norm less than or equal to 1, without loss of
generality, we can make a modification on function V , by assuming that it satisfies the following:

(2.3) V (t) = V (2), for |t| ≥ 2.

Hereafter, we will denote this new modification of V by itself. Moreover, according to (A1)-
(A4),

0 < min
R2

A(x, y) ≤ A(x, y) ≤ max
R2

A(x, y) < +∞.

In what follows, A = min
R2

A(x, y) and A = max
R2

A(x, y).

Next, we prove an important estimate that will be used often in this paper.

Lemma 2.1. Let u ∈ E. If x1, x2 ∈ R with x1 < x2, then∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy ≤ ξ1 (|x1 − x2|)

|x1 − x2|

∫ 1

0

∫ x2

x1

Φ(|ux|)dxdy,

where ξ1 was given in Lemma A.1.

Proof. First of all note that from Lemma A.4, u ∈W 1,l
loc(Ω0), and hence, by [20, Theorem 8.2],

|u(x2, y)− u(x1, y)| =
∣∣∣∣∫ x2

x1

ux(x, y)dx

∣∣∣∣ .
As Φ is even,

(2.4) Φ (|u(x2, y)− u(x1, y)|) = Φ

(∫ x2

x1

ux(x, y)dx

)
.

Invoking Jensen’s Inequality given in [52, Theorem 3.3],

(2.5) Φ

(∫ x2

x1

ux(x, y)dx

)
≤ 1

|x1 − x2|

∫ x2

x1

Φ((x2 − x1)ux(x, y))dx,

then by (2.4) and (2.5),∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy ≤ 1

|x1 − x2|

∫ 1

0

∫ x2

x1

Φ ((x2 − x1)ux(x, y)) dxdy.

According to Lemma A.1,∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy ≤ ξ1(|x1 − x2|)

|x1 − x2|

∫ 1

0

∫ x2

x1

Φ (ux(x, y)) dxdy,
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and the lemma follows. �

As a consequence of the last lemma, we obtain the following result.

Corollary 2.2. If u ∈ E and I(u) < +∞, then:

a) The function x ∈ R 7→ u(x, ·) ∈ LΦ(0, 1) is uniformly continuous a.e..
b) The function x ∈ R 7→ ‖u(x, ·)− 1‖LΦ(0,1) is continuous a.e..

Proof. Let be x1, x2 ∈ R such that x1 < x2. Since Φ is an increasing function in (0,+∞) and
|∂xu| ≤ |∇u|, the Lemma 2.1 ensures that∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy ≤ ξ1(|x1 − x2|)

|x1 − x2|

∫ 1

0

∫ x2

x1

Φ(|∇u|)dxdy,

and so, ∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy ≤ I(u) max

{
|x1 − x2|l−1, |x1 − x2|m−1

}
.

From this, given ε > 0, there is δ > 0 such that∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy < ε for |x1 − x2| < δ.

The last inequality combined with Lemma A.1 gives

ξ0

(
‖u(x2, ·)− u(x1, ·)‖LΦ(0,1)

)
< ε for |x1 − x2| < δ.

Therefore,
|x1 − x2| < δ ⇒ ‖u(x2, ·)− u(x1, ·)‖LΦ(0,1) < ξ−1

0 (ε),

finishing the proof of a). The item b) follows from a), because we have the inequality below∣∣∣‖u(x2, ·)− 1‖LΦ(0,1) − ‖u(x1, ·)− 1‖LΦ(0,1)

∣∣∣ ≤ ‖u(x2, ·)− u(x1, ·)‖LΦ(0,1).

This completes the proof. �

Another important consequence of Lemma 2.1 is the following result.

Lemma 2.3. If u ∈ E satisfies

‖u(x, ·)− 1‖W 1,Φ(0,1) ≥ r a.e. in x ∈ (x1, x2) ⊂ [0,+∞),

for some r > 0, then there exists µr > 0 independent of x1 and x2 satisfying∫ x2

x1

∫ 1

0
L(u)dydx ≥ |x2 − x1|

2ξ1 (|x2 − x1|)

∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy + (2µr)

m
m−1 |x2 − x1|

≥ µrh
(∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy

)
,

where h(t) = min
{
t

1
l , t

1
m

}
.

Proof. In what follows, we are going to work with the functional F : W 1,Φ(0, 1) → R defined
by

F (v) =

∫ 1

0

(
1

2
Φ
(
|v′|
)

+AV (v)

)
dy.

We claim that for any sequence (vn) ⊂ W 1,Φ(0, 1) with 0 ≤ vn(y) ≤ 1 for all y ∈ (0, 1) and
F (vn)→ 0 as n→ +∞, we must have

‖vn − 1‖W 1,Φ(0,1) → 0 as n→ +∞.
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Indeed, the limit F (vn)→ 0 gives∫ 1

0
Φ
(
|v′n|
)
dy → 0 and

∫ 1

0
V (vn)dy → 0, as n→ +∞.

Here we would like point out that by (V1) and (V3) that there are w,w > 0 satisfying

(2.6) wΦ(|t− 1|) ≤ V (t) ≤ wΦ(|t− 1|), ∀t ∈ [0, 1].

In fact, by (V1) and the fact that Φ(t) = 0 if, and only if t = 0, we have that the function
V (t)

Φ(|t−1|) is continuous and strictly positive in [0, 1− δ1]. Hence, there are α1, α2 > 0 such that

α1Φ(|t− 1|) ≤ V (t) ≤ α2Φ(|t− 1|), ∀t ∈ [0, 1− δ1].

Now (2.6) follows by taking w = min{α1, w1} and w = max{α2, w2}, where w1 and w2 were
given in (V3). Thus, since 0 ≤ vn(y) ≤ 1 for every y ∈ (0, 1), (2.6) ensures that∫ 1

0
Φ (|vn − 1|) dy ≤ 1

w

∫ 1

0
V (vn)dy, ∀n ∈ N.

Consequently, ∫ 1

0
Φ (|vn − 1|) dy → 0, as n→ +∞.

The limits above together with the fact that Φ ∈ ∆2 yield

‖vn − 1‖W 1,Φ(0,1) → 0 as n→ +∞,

which proves the claim. Thereby, if v ∈W 1,Φ(0, 1), 0 ≤ v ≤ 1 in (0, 1) and ‖v−1‖W 1,Φ(0,1) ≥ r,
then there exists µr ∈ (0, 1/2) such that

F (v) ≥ (2µr)
m
m−1 .

Now, if u ∈ E, we know that 0 ≤ u(x, ·) ≤ 1 on (0, 1) for almost every x > 0, and so, if
‖u(x, ·)− 1‖W 1,Φ(0,1) ≥ r a.e. in (x1, x2), we must have

F (u(x, ·)) ≥ (2µr)
m
m−1 a.e. in x ∈ (x1, x2),

which leads to∫ x2

x1

∫ 1

0
L(u)dydx =

∫ x2

x1

∫ 1

0
(Φ (|∇u|) +A(x, y)V (u)) dydx

≥ 1

2

∫ x2

x1

∫ 1

0
Φ (|∂xu|) dydx+

∫ x2

x1

∫ 1

0

(
1

2
Φ (|∂yu|) +AV (u)

)
dydx

≥ 1

2

∫ x2

x1

∫ 1

0
Φ (|∂xu|) dydx+

∫ x2

x1

F (u(x, ·)) dx

≥ 1

2

∫ x2

x1

∫ 1

0
Φ (|∂xu|) dydx+ (2µr)

m
m−1 |x2 − x1|.

Thanks to Lemma 2.1,∫ x2

x1

∫ 1

0
L(u)dydx ≥ 1

2

|x1 − x2|
ξ1(|x1 − x2|)

∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy + (2µr)

m
m−1 |x2 − x1|

≥ 1

2

|x1 − x2|
ξ1(|x1 − x2|)

∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy + 2

m
m−1

−1µ
m
m−1
r |x2 − x1|.
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Recalling that ξ1 (|x2 − x1|) = max
{
|x2 − x1|l, |x2 − x1|m

}
, we will consider the cases

ξ1 (|x2 − x1|) = |x2 − x1|m and ξ1 (|x2 − x1|) = |x2 − x1|l. If ξ1 (|x2 − x1|) = |x2 − x1|m,∫ x2

x1

∫ 1

0
L(u)dydx ≥ 1

2

1

|x1 − x2|m−1

∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy + 2

m
m−1

−1µ
m
m−1
r |x2 − x1|

≥ 1

2m

[
1

|x1 − x2|
m−1
m

(∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy

) 1
m

]m
+
m− 1

2m

(
2µr|x2 − x1|

m−1
m

) m
m−1

.

Using Young’s inequality for the conjugate exponents m and m
m−1 , we find∫ x2

x1

∫ 1

0
L(u)dydx ≥ 1

2

[
1

|x1 − x2|
m−1
m

(∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy

) 1
m

2µr|x2 − x1|
m−1
m

]
,

that is,

(2.7)

∫ x2

x1

∫ 1

0
L(u)dydx ≥ µr

(∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy

) 1
m

.

If ξ1 (|x1 − x2|) = |x1 − x2|l, a similar argument works to prove that∫ x2

x1

∫ 1

0
L(u)dydx ≥ 1

2l

[
1

|x1 − x2|
l−1
l

(∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy

) 1
l

]l
+(2µr)

m
m−1 |x2−x1|.

Now, since l ≤ m and 0 < 2µr < 1, we obtain that 1 < m
m−1 ≤

l
l−1 and (2µr)

l
l−1 ≤ (2µr)

m
m−1 .

Therefore,∫ x2

x1

∫ 1

0
L(u)dydx ≥ 1

2l

[
1

|x1 − x2|
l−1
l

(∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy

) 1
l

]l
+ (2µr)

l
l−1 |x2−x1|.

Employing again Young’s inequality, we derive

(2.8)

∫ x2

x1

∫ 1

0
L(u)dydx ≥ µr

(∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy

) 1
l

.

From (2.7) and (2.8),∫ x2

x1

∫ 1

0
L(u)dydx ≥ µrh

(∫ 1

0
Φ (|u(x2, y)− u(x1, y)|) dy

)
,

where h(t) = min
{
t

1
l , t

1
m

}
, which is precisely the assertion of the lemma. �

The next result characterizes the asymptotic behavior of functions u ∈ E with I(u) < +∞.

Lemma 2.4. If u ∈ E and I(u) < +∞, then

‖u(x, ·)− 1‖LΦ(0,1) → 0 as x→ +∞ and ‖u(x, ·) + 1‖LΦ(0,1) → 0 as x→ −∞.

Proof. To begin with, we claim that

(2.9) lim inf
x→+∞

∫ 1

0
Φ (|u(x, y)− 1|) dy = 0.

Indeed, if the limit does not hold, then there are r > 0 and x1 > 0 satisfying∫ 1

0
Φ (|u(x, y)− 1|) dy ≥ r, ∀x > x1.
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So, the properties of Φ together with Lemma A.1 guarantee that

r ≤ ξ1

(
‖u(x, ·)− 1‖W 1,Φ(0,1)

)∫ 1

0
Φ

(
|u(x, y)− 1|

‖u(x, ·)− 1‖W 1,Φ(0,1)

)
dy

≤ ξ1

(
‖u(x, ·)− 1‖W 1,Φ(0,1)

)∫ 1

0
Φ

(
|u(x, y)− 1|

‖u(x, ·)− 1‖LΦ(0,1)

)
dy

≤ ξ1

(
‖u(x, ·)− 1‖W 1,Φ(0,1)

)
,

that is,

‖u(x, ·)− 1‖W 1,Φ(0,1) ≥ ξ−1
1 (r) := r1 for all x > x1.

The last inequality permits to apply Lemma 2.3 to get µr1 > 0 satisfying

I(u) ≥
∫ x

x1

∫ 1

0
L(u)dydx ≥ (2µr1)

m
m−1 (x− x1).

Taking the limit of x→ +∞ we infer that I(u) = +∞, which is absurd, and (2.9) is proved.
As Φ ∈ ∆2, the limit in (2.9) is equivalent to

(2.10) lim inf
x→+∞

‖u(x, ·)− 1‖LΦ(0,1) = 0.

Next we are going to show that

(2.11) lim sup
x→+∞

‖u(x, ·)− 1‖LΦ(0,1) = 0.

To see why, assume by contradiction that lim sup
x→+∞

‖u(x, ·) − 1‖LΦ(0,1) > 0. Then, there exists

r > 0 such that

(2.12) lim sup
x→+∞

‖u(x, ·)− 1‖LΦ(0,1) > 2r.

By Corollary 2.2, we can assume that the function x ∈ R 7→ ‖u(x, ·) − 1‖LΦ(0,1) is continuous

in R. So, according to (2.10) and (2.12), there is a sequence of disjoint intervals (σi, τi) with
0 < σi < τi < σi+1 < τi+1, i ∈ N, and σi → +∞ as i→ +∞ such that for each i,

r ≤ ‖u(x, ·)− 1‖LΦ(0,1) ≤ 2r for x ∈ [σi, τi]

and

‖u(σi, ·)− 1‖LΦ(0,1) = r and ‖u(τi, ·)− 1‖LΦ(0,1) = 2r.

Due to triangular inequality,

(2.13) ‖u(τi, ·)− u(σi, ·)‖LΦ(0,1) ≥ r ∀i ∈ N,

from where it follows that there exists ε > 0 such that

(2.14)

∫ 1

0
Φ (|u(τi, ·)− u(σi, ·)|) dy ≥ ε, ∀i ∈ N.

In fact, arguing by contradiction, let us suppose that there is a sequence (in) ⊂ N satisfying∫ 1

0
Φ (|u(τin , ·)− u(σin , ·)|) dy → 0 as n→ +∞.

Since Φ ∈ ∆2, the above limit implies that

‖u(τin , ·)− u(σin , ·)‖LΦ(0,1) → 0 as n→ +∞,
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which contradicts (2.13). Consequently, by Lemma 2.3 there exists µr > 0 such that

I(u) ≥
+∞∑
i=1

∫ τi

σi

∫ 1

0
L(u)dydx ≥

+∞∑
i=1

µrh

(∫ 1

0
Φ (|u(τi, ·)− u(σi, ·)|) dy

)
that combined with (2.14) provides

I(u) ≥ µr
+∞∑
i=1

h(ε),

which is absurd, because I(u) < +∞. Now, the lemma follows from (2.10) and (2.11). �

Our next result is a key point in our approach, because it establishes the existence of
heteroclinic solution for a class of problem defined on the strip Ω0 = R × [0, 1], which will
be used to prove the existence of heteroclinic solution in whole R2.

Theorem 2.5. There exists u ∈ E such that I(u) = c. Moreover, u is a weak solution to the
quasilinear elliptic problem −∆Φu+A(x, y)V ′(u) = 0, in Ω0

∂u

∂η
(x, y) = 0, on ∂Ω0.

(P )

Proof. Let (un) ⊂ E be a minimizing sequence for I. It is straightforward to check that (un)

is bounded in W 1,Φ
loc (Ω0). Then, by a classical diagonal argument, there are a subsequence of

(un), still denoted by (un), and u ∈W 1,Φ
loc (Ω0) verifying

un ⇀ u in W 1,Φ
loc (Ω0) and un(x, y)→ u(x, y) a.e. in Ω0.

By the pointwise convergence, it is plain that

u(x, y) = −u(−x, y) a.e. in Ω0 and 0 ≤ u(x, y) ≤ 1 for x ≥ 0,

from where it follows that u ∈ E. Therefore, from (2.1) we may conclude I(u) = c. To complete
the proof, it is sufficient to show that∫

Ω0

(
φ (|∇u|)∇u∇ψ +A(x, y)V ′(u)ψ

)
dydx ≥ 0,

for all ψ ∈ X1,Φ(Ω0), where

(2.15) X1,Φ(Ω0) =
{
w ∈W 1,Φ(Ω0) with w(x, y) = 0 for |x| ≥ L for some L > 0

}
.

Now given ψ ∈ X1,Φ(Ω0), we can write ψ(x, y) = ψo(x, y) + ψe(x, y), where

ψe(x, y) =
ψ(x, y) + ψ(−x, y)

2
and ψo(x, y) =

ψ(x, y)− ψ(−x, y)

2
.

Note that ψo is odd in x and ψe is even in x. From this, for t > 0 we set

ϕ(x, y) =

 u(x, y) + tψo(x, y), if x ≥ 0 and u(x, y) + tψo(x, y) ≥ 0
−u(x, y)− tψo(x, y), if x ≥ 0 and u(x, y) + tψo(x, y) ≤ 0
−ϕ(−x, y) if x < 0,

from where it follows that ϕ is odd in the variable x and ϕ(x, y) ≥ 0 if x ≥ 0. Moreover, from
(V2), I(ϕ) = I(u+ tψo). Next, putting

ϕ̃(x, y) = max {−1,min{1, ϕ(x, y)}} for (x, y) ∈ Ω0,

a direct computation shows that ϕ̃ ∈ E with

|∇ϕ̃(x, y)| ≤ |∇(u+ tψo)(x, y)|, ∀(x, y) ∈ Ω0.
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Furthermore, from (V1)-(V2),

V (ϕ̃(x, y)) ≤ V ((u+ tψo)(x, y)) , ∀(x, y) ∈ Ω0.

Therefore,

(2.16) I(u+ tψo) = I(ϕ) ≥ I(ϕ̃) ≥ c = I(u).

On the other hand, according to (A.2),

Φ (|∇(u+ tψ)|)− Φ (|∇(u+ tψo)|) ≥ φ (|∇(u+ tψo)|)∇(u+ tψo)∇(tψe),

so ∫
Ω0

(Φ(|∇(u+ tψ)|)−Φ(|∇(u+ tψo)|))dxdy

≥
∫

Ω0

φ(|∇(u+ tψo)|)
(
t∇u∇ψe + t2∇ψo∇ψe

)
dxdy.

(2.17)

Since I(u) = c and ψ ∈ X1,Φ(Ω0), we see that I(u + tψ), I(u + tψo) < +∞, because for |x|
sufficiently large we must have u(x, y) + tψ(x, y) = u(x, y) and u(x, y) + tψo(x, y) = u(x, y).
Thus,

I(u+ tψ)− I(u+ tψo) =

∫
Ω0

(Φ(|∇(u+ tψ)|)− Φ(|∇(u+ tψo)|)) dxdy

+

∫
Ω0

A(x, y) (V (u+ tψ)− V (u+ tψo)) dxdy,

and by (2.17),

I(u+ tψ)− I(u+ tψo) ≥ t
∫

Ω0

φ(|∇(u+ tψo)|)∇u∇ψedxdy

+ t2
∫

Ω0

φ(|∇(u+ tψo)|)∇ψo∇ψedxdy

+

∫
Ω0

A(x, y) (V (u+ tψ)− V (u+ tψo)) dxdy.

(2.18)

It is easily seen that the functions φ(|∇(u+ tψo)|)∇u∇ψe and φ(|∇(u+ tψo)|)∇ψo∇ψe are odd
in the variable x, and so,

(2.19)

∫
Ω0

φ(|∇(u+ tψo)|)∇u∇ψedxdy =

∫
Ω0

φ(|∇(u+ tψo)|)∇ψo∇ψedxdy = 0.

Substituting (2.19) into (2.18), we infer that

I(u+ tψ)− I(u+ tψo) ≥
∫

Ω0

A(x, y) (V (u+ tψ)− V (u+ tψo)) dxdy

that combines with (2.16) to give

I(u+ tψ)− I(u) ≥
∫

Ω0

A(x, y) (V (u+ tψ)− V (u+ tψo)) dxdy,
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and so, ∫
Ω0

(φ(|∇u|)∇u∇ψ +A(x, y)V ′(u)ψ)dxdy = lim
t→0+

I(u+ tψ)− I(u)

t

≥ lim
t→0+

∫
Ω0

A(x, y)
V (u+ tψ)− V (u+ tψo)

t
dxdy

≥ lim
t→0+

∫
Ω0

A(x, y)

(
V (u+ tψ)− V (u)

t
− V (u+ tψo)− V (u)

t

)
dxdy

≥
∫

Ω0

A(x, y)V ′(u)(ψ − ψo)dxdy =

∫
Ω0

A(x, y)V ′(u)ψedxdy.

(2.20)

Since the function A(x, y)V ′(u)ψe is odd in x, it follows that

(2.21)

∫
Ω0

(
φ(|∇u|)∇u∇ψ +A(x, y)V ′(u)ψ

)
dxdy ≥ 0,

which completes the proof. �

In what follows, let us consider

K = {u ∈ E : I(u) = c} .
Invoking Theorem 2.5, K 6= ∅ and it consists of critical points of I. In the sequel, for each
u ∈ K, we will show that there is a function v ∈ K depending on u such that

v(x, 0) = v(x, 1) for any x ∈ R.

To prove this, we define

Ep = {w ∈ E : w(x, 0) = w(x, 1) a.e. in x ∈ R}
and

cp = inf
w∈Ep

I(w).

The next lemma establishes an important relation between c and cp.

Lemma 2.6. It holds that cp = c. Moreover, given u ∈ K there exists v ∈ K, depending on u,
such that v(x, 0) = v(x, 1) for all x ∈ R.

Proof. Since Ep ⊂ E, c ≤ cp. Now we are going to prove that cp ≤ c. To see this, given w ∈ E,
we write I(w) = J1(w) + J2(w), where

J1(w) =

∫
R

∫ 1/2

0
L(w)dydx and J2(w) =

∫
R

∫ 1

1/2
L(w)dydx.

Let u ∈ K. So, if J1(u) ≤ J2(u), we consider the function

v(x, y) =

{
u(x, y), if 0 ≤ y ≤ 1

2 ,
u(x, 1− y), if 1

2 ≤ y ≤ 1

that belongs to Ep. From (A2)-(A3), J2(v) = J1(v) = J1(u), and hence,

I(v) = J1(v) + J2(v) = 2J1(u) ≤ J1(u) + J2(u) = I(u),

showing that cp ≤ c. For that reason, cp = c and I(v) = c with v(x, 0) = v(x, 1) for every
x ∈ R. On the other hand, if J2(u) ≤ J1(u), we consider

ṽ(x, y) =

{
u(x, 1− y), if 0 ≤ y ≤ 1

2
u(x, y), if 1

2 ≤ y ≤ 1.
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By a similar argument, ṽ ∈ Ep and J1(ṽ) = J2(ṽ) = J2(u), from where it follows that cp = c,
proving the desired result. �

The Lemma 2.6 shows that the set

Kp = {w ∈ K : w(x, 0) = w(x, 1) for all x ∈ R}
is non empty. We would like point out that if w ∈ Kp, then it can extend periodicity on R2

with period 1. Hereafter, the elements of Kp will be considered extended in whole R2.
Now, we are ready to prove our main theorem of this section.

Proof of Theorem 1.1.
Let v ∈ Kp. Then i) and ii) are immediate. According to the proof of Theorem 2.5,∫

Ω0

(
φ(|∇v|)∇v∇ψ +A(x, y)V ′(v)ψ

)
dydx = 0 ∀ψ ∈ X1,Φ(Ω0).

In the sequel, we fix Ω1 = R× [1, 2],

E1 =
{
w ∈W 1,Φ

loc (Ω1) : w(x, y) = −w(−x, y), x ∈ R, and 0 ≤ w(x, y) ≤ 1 for x > 0
}
,

the functional I1 : W 1,Φ
loc (Ω1)→ R ∪ {+∞} given by

I1(w) =

∫
Ω1

L(w)dydx,

and the real number c1 = inf
w∈E1

I1(w). It is easily seen that c = c1 and∫
Ω1

(
φ(|∇v|)∇v∇ψ +A(x, y)V ′(v)ψ

)
dydx = 0,

for each ψ ∈ X1,Φ(Ω1), where

(2.22) X1,Φ(Ω1) =
{
u ∈W 1,Φ(Ω1) with u(x, y) = 0 for |x| ≥ L for some L > 0

}
.

From this, a straightforward computation ensures that∫
R×[0,2]

(
φ(|∇v|)∇v∇ψ +A(x, y)V ′(v)ψ

)
dydx = 0,

for any ψ ∈ X1,Φ(R× [0, 2]), where

(2.23) X1,Φ(R×[0, 2]) =
{
u ∈W 1,Φ(R× [0, 2]) with u(x, y) = 0 for |x| ≥ L for some L > 0

}
.

A similar argument works to prove that∫
R×[l,k]

(
φ(|∇v|)∇v∇ψ +A(x, y)V ′(v)ψ

)
dydx = 0,

for all l, k ∈ Z with l < k e for any ψ ∈ X1,Φ(R× [l, k]) where

(2.24) X1,Φ(R× [l, k]) =
{
u ∈W 1,Φ(R× [l, k]) with u(x, y) = 0 for |x| ≥ L for some L > 0

}
.

So, since k and l are arbitrary, we get∫
R2

(
φ(|∇v|)∇v∇ψ +A(x, y)V ′(v)ψ

)
dydx = 0,

for any ψ ∈ W 1,Φ(R2) with compact support in R2. By [45, Theorem 1.7] there exist α > 0

and M > 0 such that v ∈ C1,α
loc (R2,R) with ‖v‖

C1,α
loc (R2)

≤M . Next, we will show now that v is

a heteroclinic solution from -1 to 1. To do this, given n ∈ N, we set

vn(x, y) = v(x+ n, y), ∀(x, y) ∈ [0, 1]× [0, 1].
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Thereby, (vn) is bounded in C1,α([0, 1] × [0, 1]), and so there exists v0 ∈ C1([0, 1] × [0, 1])
and a subsequence (vnj ) of (vn) such that vnj → v0 in C1([0, 1] × [0, 1]). In particular, for
x ∈ [0, 1] fixed, vnj (x, ·) → v0(x, ·) as j → +∞ uniformly in y ∈ [0, 1]. According to Lemma

2.4, vnj (x, ·)→ 1 in LΦ(0, 1) as j → +∞. Passing to a subsequence if necessary, vnj (x, y)→ 1
for almost every y ∈ [0, 1], and hence, v0(x, y) = 1 in [0, 1] × [0, 1]. Thus, vnj (x, y) → 1 as
j → +∞ uniformly in y ∈ [0, 1], and consequently, v(x, y) → 1 as x → +∞ uniformly in
y ∈ [0, 1]. Since v is 1-periodic in the variable y and odd in the variable x, we conclude

v(x, y)→ −1 as x→ −∞ and v(x, y)→ 1 as x→ +∞, uniformly in y ∈ R.

Finally, adapting the same arguments explored in reference [14, Lemma 3.9], we conclude that
0 < v(x, y) < 1 for all x > 0 and y ∈ R, and the proof is complete. 2

If u ∈ K, then we can extend u by periodicity on R2 with period 2 in y satisfying the
equation (PDE). Indeed, defining the function

ũ(x, y) =

{
u(x, y), if (x, y) ∈ R× [0, 1],
u(x, 2− y), if (x, y) ∈ R× [1, 2],

we have that

ũ(x, 0) = ũ(x, 2) and
∂ũ

∂η
(x, 0) = 0 =

∂ũ

∂η
(x, 2).

Now, we extend ũ by periodicity to whole R2 by setting u : R2 → R by u = ũ in R× [0, 2] and
u(x, y) = ũ(x, y − 2k), where y ∈ R and k ∈ Z is the only integer such that 0 ≤ y − 2k < 2.
From now on, without loss of generality, we can assume that u ∈ K is a periodic function with
period 2 in the variable y.

Arguing as in the proof of Theorem 1.1, we have the following result.

Theorem 2.7. Assume (φ1)-(φ2), (V1)-(V3) and (A1)-(A3). If u ∈ K, then u is a weak

solution of (PDE) in C1,α
loc (R2,R), for some positive α, that verifies the following:

i) u(x, y) = −u(−x, y), for all (x, y) ∈ R2,
ii) u(x, y) = u(x, y + 2), for each (x, y) ∈ R2,

iii) 0 < u(x, y) < 1 for any x > 0 and y ∈ R.

Moreover, u is a heteroclinic solution from -1 to 1, i.e.

u(x, y)→ −1 as x→ −∞ and u(x, y)→ 1 as x→ +∞, uniformly in y ∈ R.

Remark 2.1. If Φ(t) = |t|2
2 , the operator ∆Φ is the Laplacian operator, and in this case, using

a local unique theorem for elliptic equations it is possible to prove that Theorems 1.1 and 2.7 are
essentially the same, because every 2-periodic solution of (PDE) is exactly 1-periodic solution,
for more details see [9, Lemma 2.4] or [47, Proposition 2.18]. Here, since we are working with
a large class of operator we were not able to prove that these theorems are equal.

Remark 2.2. Here we would like to point out that Theorems 1.1 and 2.7 are valid for the
p-Laplacian operator with 1 < p < +∞.

3. Compacteness properties of I

In this section, for our purposes, we need to better characterize the compactness properties
of I. For this to happen, given L ∈ (0,+∞] we set Ω0,L = (−L,L)× [0, 1] and

I0,L(w) =

∫ ∫
Ω0,L

L(w)dydx for w ∈W 1,Φ(Ω0,L).
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Note that Ω0,+∞ = Ω0, I0,+∞ = I and I0,L is also well defined on E being weakly lower

semicontinuous with respect to the W 1,Φ(Ω0,L) topology. Moreover, given u ∈ E, we can
identify u|Ω0,L

with u itself, and so if 0 < L1 < L2, we have

I0,L1(u) ≤ I0,L2(u) ≤ I(u), ∀u ∈ E.
From now on, given δ ∈ (0, 1), we set

(3.1) λδ = 2m+1δl +A max
|s−1|≤Λδ

V (s) and lδ =
c+ 1

(2µδ)
m
m−1

,

where Λ > 0 and µδ > 0 were given in (A.1) and Lemma 2.3 respectively.
The next lemma is crucial to prove a compactness result involving the functional I, see

Lemma 3.6 for more details.

Lemma 3.1. There exists δ0 ∈ (0, δ12 ) such that, for any δ ∈ (0, δ0), if u ∈ E, L ∈ (lδ + 1,+∞]
and I0,L(u) ≤ c+ λδ, then the following hold:

(i) There exists x+ ∈ (0, lδ) verifying

‖u(x+, ·)− 1‖W 1,Φ(0,1) < δ.

(ii) For x+ given in (i) we have∫ L

x+

∫ 1

0
(Φ(|∇u|) +A(x, y)V (u)) dydx ≤ 3

2
λδ.

(iii) For each x ∈ (x+, L),

‖u(x, ·)− 1‖LΦ(0,1) ≤ δ1.

Proof. First note that λδ → 0 as δ → 0. Then we can fix δ0 ∈ (0, δ1/2) satisfying

(3.2) λδ < min

{
1,

2

3
µ δ1

2

(
δ1

2

)m
l

}
, ∀δ ∈ (0, δ0),

where δ1 > 0 was defined in (V3) and µ δ1
2

given in Lemma 2.3 in correspondence to r = δ1
2 .

Let u ∈ E, L ∈ (lδ + 1,+∞] and δ ∈ (0, δ0) with I0,L(u) ≤ c + λδ. Assuming that (i) is false,
we deduce

‖u(x, ·)− 1‖W 1,Φ(0,1) ≥ δ, ∀x ∈ (0, lδ).

According to Lemma 2.3, there exists µδ > 0 such that

I0,L(u) ≥
∫ lδ

0

∫ 1

0
L(u)dydx ≥ (2µδ)

m
m−1 lδ = c+ 1 > c+ λδ,

which is a contradiction. Therefore, there is x+ ∈ (0, lδ) checking item (i).
To prove (ii), let us consider

ũ(x, y) =


u(x, y), if 0 ≤ x ≤ x+ and y ∈ [0, 1],
(x− x+) + (x+ + 1− x)u(x+, y), if x+ ≤ x ≤ x+ + 1 and y ∈ [0, 1],
1, if x+ + 1 ≤ x and y ∈ [0, 1],
−ũ(−x, y), if x < 0 and y ∈ [0, 1].

Thereby, ũ ∈ E and c ≤ I(ũ) = I0,x++1(ũ). Moreover,

∂xũ(x, y) = 1− u(x+, y) and ∂yũ(x, y) = (x+ + 1− x)∂yu(x+, y) in (x+, x+ + 1)× [0, 1].

Using Lemma A.1 and the fact that Φ is increscing on (0,+∞), it is possible to show that

Φ(|∇ũ|) ≤ 2mΦ(|1− u(x+, y)|) + 2mΦ(|∂yu(x+, y)|) in (x+, x+ + 1)× [0, 1],
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from where it follows that∫ x++1

x+

∫ 1

0
L(ũ)dydx ≤ 2m

∫ x++1

x+

∫ 1

0
(Φ(|1− u(x+, y)|) + Φ(|∂yu(x+, y)|))dydx

+

∫ x++1

x+

∫ 1

0
A(x, y)V (ũ)dydx.

(3.3)

Applying again Lemma A.1,∫ 1

0
Φ(|u(x+, y)− 1|)dy =

∫ 1

0
Φ

(
|u(x+, y)− 1|

‖u(x+, ·)− 1‖LΦ(0,1)

‖u(x+, ·)− 1‖LΦ(0,1)

)
dy

≤ ξ1

(
‖u(x+, ·)− 1‖LΦ(0,1)

)
≤ ξ1(δ) = δl.

(3.4)

A similar argument works to prove that

(3.5)

∫ 1

0
Φ(|∂yu(x+, y)|)dy ≤ δl.

Gathering (3.3) with (3.4) and (3.5), we obtain∫ x++1

x+

∫ 1

0
L(ũ)dydx ≤ 2m+1δl +A

∫ x++1

x+

∫ 1

0
V (ũ)dydx.

By item (i) and (A.1),

‖ũ(x, ·)− 1‖L∞(0,1) ≤ Λδ ∀x ∈ (x+, x+ + 1),

and hence

(3.6)

∫ x++1

x+

∫ 1

0
L(ũ)dydx ≤ 2m+1δl +A max

|s−1|≤Λδ
V (s) = λδ.

Now, since

I0,L(ũ) = I0,x+(u) + 2

∫ L

x+

∫ 1

0
L(ũ)dydx = I0,L(u) + 2

∫ L

x+

∫ 1

0
L(ũ)dydx− 2

∫ L

x+

∫ 1

0
L(u)dydx,

and c ≤ I0,L(ũ) follows from (3.6) that∫ L

x+

∫ 1

0
L(u)dydx ≤ 3

2
λδ,

which proves (ii).
Finally, if (iii) does not hold, we should find θ ∈ (x+, L) satisfying

‖u(θ, ·)− 1‖LΦ(0,1) > δ1.

Recalling that by (i),

‖u(x+, ·)− 1‖LΦ(0,1) <
δ1

2
,

the Corollary 2.2 together with Intermediate Value Theorem guarantees the existence of
σ ∈ (x+, θ) such that

‖u(θ, ·)− u(σ, ·)‖LΦ(0,1) ≥
δ1

2
and ‖u(x, ·)− 1‖LΦ(0,1) ≥

δ1

2
, ∀x ∈ (σ, θ).

Invoking Lemma 2.3,∫ L

x+

∫ 1

0
L(u)dydx ≥ µ δ1

2

h

(∫ 1

0
Φ(|u(θ, y)− u(σ, y)|)dy

)
.
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On the other hand, from Lemma A.1,∫ 1

0
Φ(|u(θ, y)− u(σ, y)|)dy ≥ ξ0

(
‖u(θ, ·)− u(σ, ·)‖LΦ(0,1)

)∫ 1

0
Φ

(
|u(θ, y)− u(σ, y)|

‖u(θ, ·)− u(σ, ·)‖LΦ(0,1)

)
dy

≥ ξ0

(
‖u(θ, ·)− u(σ, ·)‖LΦ(0,1)

)
≥ ξ0

(
δ1

2

)
=

(
δ1

2

)m
.

Hence, by definition of function h we get the inequality below∫ L

x+

∫ 1

0
L(u)dydx ≥ µ δ1

2

(
δ1

2

)m
l

that combines with (ii) to give

µ δ1
2

(
δ1

2

)m
l

≤ 3

2
λδ,

which contradicts (3.2), and the lemma follows. �

From Lemma 3.1, we obtain in particular the following result.

Lemma 3.2. For all ε > 0 there are λε > 0 and lε > 0 such that if u ∈ E and I(u) ≤ c+ λε,
then u− 1 ∈W 1,Φ

(
(lε,+∞)× (0, 1)

)
and∫ +∞

lε

∫ 1

0
(Φ(|u− 1|) + Φ(|∇u|)) dydx ≤ ε.

Proof. By definition of λδ, see (3.1), we know that λδ → 0 as δ → 0. Thereby, given ε > 0 we
can choose δ0 ∈ (0, δ1/2) satisfying

3

2
λδ ≤

ε

max
{

1, 1
A w

} , ∀δ ∈ (0, δ0),

where w was given in (2.6). Denoting λε = λδ, lε = lδ and L = +∞, it follows from Lemma
3.1 that

(3.7)

∫ +∞

lε

∫ 1

0
(Φ(|∇u|) +A(x, y)V (u)) dydx ≤ 3

2
λδ ≤

ε

max
{

1, 1
A w

} .
According to (2.6),

∫ +∞

lε

∫ 1

0
(Φ(|u− 1|) + Φ(|∇u|)) dydx ≤

∫ +∞

lε

∫ 1

0
Φ(|∇u|)dydx+

∫ +∞

lε

∫ 1

0

1

w
V (u)dydx

≤
∫ +∞

lε

∫ 1

0
Φ(|∇u|)dydx+

1

w A

∫ +∞

lε

∫ 1

0
A(x, y)V (u)dydx

≤ max

{
1,

1

A w

}∫ +∞

lε

∫ 1

0
(Φ(|∇u|) +A(x, y)V (u)) dydx.

(3.8)

From (3.7) and (3.8), u− 1 ∈W 1,Φ
(
(lε,+∞)× (0, 1)

)
with∫ +∞

lε

∫ 1

0
(Φ(|u− 1|) + Φ(|∇u|)) dydx ≤ ε,

and this is precisely the assertion of the lemma. �
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In order to continue our analysis, we will fix the following set

Ẽ =
{
w ∈W 1,Φ

loc (Ω0) : w is odd in x and w − 1 ∈W 1,Φ([0,+∞)× [0, 1])
}

and the real number

c̃ = inf
w∈Ẽ

I(w).

It is very important to point out that Ẽ 6= ∅, because the function ϕ∗ given in (2.2) belongs to

Ẽ. Moreover, it is easy to check that if w ∈ Ẽ, then w + 1 ∈ W 1,Φ((−∞, 0]× [0, 1]), and that

if w1, w2 ∈ Ẽ, then w1 − w2 ∈ W 1,Φ(Ω0). Have this in mind, we are able to define on Ẽ the

metric ρ : Ẽ × Ẽ → [0,+∞) given by

ρ(w1, w2) = ‖w1 − w2‖W 1,Φ(Ω0).

A direct computation guarantees that (Ẽ, ρ) is a complete metric space.
The next lemma shows that the numbers c and c̃ are equal.

Lemma 3.3. It holds that c̃ = c. Moreover, if (un) ⊂ E and I(un) → c, then there exists

n0 ∈ N such that un ∈ Ẽ for any n ≥ n0. Therefore, (un) is a minimizing sequence for I on

Ẽ.

Proof. Let (un) ⊂ E be a sequence with I(un) → c. Thus, given ε > 0 there is n0 ∈ N
verifying I(un) ≤ c + ε for any n ≥ n0. By Lemma 3.2, there exists lε > 0 such that
un − 1 ∈W 1,Φ((lε,+∞)× [0, 1]) for all n ≥ n0. Hence,

un − 1 ∈W 1,Φ([0,+∞)× [0, 1]), ∀n ≥ n0.

From this, (un) ⊂ Ẽ and

c̃ ≤ I(un) = c+ on(1), ∀n ≥ n0.

Taking the limit of n→ +∞, we get c̃ ≤ c. Now, let us consider (vn) ⊂ Ẽ with I(vn)→ c̃ and

vn(x, y) =

 1, if vn(x, y) ≥ 1
vn(x, y), if − 1 ≤ vn(x, y) ≤ 1
−1, if vn(x, y) ≤ −1.

From the properties of Φ, V and vn, I(vn) ≤ I(vn) for every n ∈ N. Setting

ṽn(x, y) =

 vn(x, y), if vn ≥ 0 and x > 0
−vn(x, y), if vn ≤ 0 and x > 0
−vn(−x, y), if x ≤ 0,

it is easy to see that (ṽn) ⊂ E and I(ṽn) = I(vn) for each n ∈ N. Therefore,

c ≤ I(ṽn) = I(vn) ≤ I(vn) = c̃+ on(1).

Taking the limit of n → +∞ we obtain c ≤ c̃, from where it follows that c = c̃. Finally, if
(un) ⊂ E and I(un) → c, then we already know that there is n0 ∈ N such that un ∈ Ẽ for

n ≥ n0, and as c = c̃, we deduce that (un) is a minimizing sequence for I on Ẽ. �

In the sequel, we say that a sequence (un) is a (PS)d sequence for I, with d ∈ R, if (un) ⊂ Ẽ
such that

I(un)→ d and ‖I ′(un)‖∗ → 0 as n→ +∞,
where

‖I ′(w)‖∗ = sup
{
I ′(w)ψ : ψ ∈ X1,Φ(Ω0) and ‖ψ‖W 1,Φ(Ω0) ≤ 1

}
.
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Lemma 3.4. If (un) ⊂ E and I(un) → c, then there exists a sequence (wn) ⊂ Ẽ such that
(wn) is a (PS)c sequence for I and

‖un − wn‖W 1,Φ(Ω0) ≤
1

n
, ∀n ∈ N.

Proof. Let (un) ⊂ E with I(un)→ c. As (Ẽ, ρ) is a complete metric space, we can employ the

Ekeland’s Variational Principle to find a sequence (wn) ⊂ Ẽ satisfying:

(a) I(wn) ≤ I(un) for any n ∈ N,
(b) ρ(wn, un) ≤ 1

n for all n ∈ N,

(c) I(wn)− I(w) < 1
n‖wn − w‖W 1,Φ(Ω0) for each w ∈ Ẽ with w 6= wn.

Now, given ψ ∈ X1,Φ(Ω0) we can write ψ = ψo + ψe, where ψo is odd in the variable x and ψe
is ever in x. It is easily seen that wn + tψo ∈ Ẽ for all n ∈ N and t > 0. From (c),

I(wn + tψ)− I(wn) = I(wn + tψ)− I(wn + tψo) + I(wn + tψo)− I(wn)

≥ I(wn + tψ)− I(wn + tψo)−
1

n
‖tψo‖W 1,Φ(Ω0),

or equivalently,

I(wn + tψ)− I(wn)

t
≥ I(wn + tψ)− I(wn + tψo)

t
− 1

n
‖ψo‖W 1,Φ(Ω0).

Arguing as in the proof of Theorem 2.5, we find

(3.9) I ′(wn)ψ ≥ − 1

n
‖ψo‖W 1,Φ(Ω0).

Here we would like point out that the same arguments found in [14, Lemma 4.6] work to show
that

(3.10) ‖ψo‖W 1,Φ(Ω0) ≤ ‖ψ‖W 1,Φ(Ω0).

From (3.9)-(3.10) and replacing ψ by −ψ, we get

|I ′(wn)ψ| ≤ 1

n
‖ψ‖W 1,Φ(Ω0).

Thereby,

‖I ′(wn)‖∗ → 0 as n→ +∞.
Finally, from Lemma 3.3 and (a),

c = c̃ ≤ I(wn) ≤ I(un) = c+ on(1),

showing that I(wn) → c. Therefore, (wn) is a (PS)c sequence for I, and the lemma is
proved. �

From now on, we consider (un) ⊂ E and (wn) ⊂ Ẽ as in the last lemma. So, (wn) is also

bounded in W 1,Φ
loc (Ω0). Indeed, for each L > 0 the Lemma 3.4 ensures that

‖wn‖W 1,Φ(Ω0,L) ≤ ‖wn − un‖W 1,Φ(Ω0,L) + ‖un‖W 1,Φ(Ω0,L) ≤
1

n
+ ‖un‖W 1,Φ(Ω0,L).

Since (un) is bounded in W 1,Φ
loc (Ω0), it follows that (wn) also is bounded in W 1,Φ

loc (Ω0). Then,

for some subsequence, there is u0 ∈W 1,Φ
loc (Ω0) verifying

(3.11) wn ⇀ u0 in W 1,Φ
loc (Ω0),

(3.12) wn → u0 in LΦ
loc(Ω0),
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(3.13) wn → u0 in L1
loc(Ω0)

and

(3.14) wn(x, y)→ u0(x, y) a.e. in Ω0.

Lemma 3.5. There exists a subsequence of (wn), still denoted by itself, such that

∇wn(x, y)→ ∇u0(x, y) a.e. in Ω0.

Proof. Given L > 0, let us consider ψ ∈ C∞0 (R2) satisfying

0 ≤ ψ ≤ 1, ψ ≡ 1 in Ω0,L and supp(ψ) ⊂ Ω0,L+1.

From (φ1)-(φ2), it is possible to show that

(3.15) 〈φ(|z1|)z1 − φ(|z2|)z2, z1 − z2〉 > 0, ∀z1, z2 ∈ R2, z1 6= z2.

Thereby,

0 ≤
∫

Ω0,L

(φ(|∇wn|)∇wn − φ(|∇u0|)∇u0)(∇wn −∇u0)dydx

≤
∫

Ω0,L+1

ψ(φ(|∇wn|)∇wn − φ(|∇u0|)∇u0)(∇wn −∇u0)dydx

≤
∫

Ω0,L+1

ψφ(|∇wn|)∇wn(∇wn −∇u0)dydx−
∫

Ω0,L+1

ψφ(|∇u0|)∇u0(∇wn −∇u0)dydx.

(3.16)

Setting the linear functional f : W 1,Φ(Ω0,L+1)→ R given by

f(v) =

∫
Ω0,L+1

ψφ(|∇u0|)∇u0∇vdydx,

we have that it is continuous, because φ(|∇u0|)∇u0 ∈ LΦ̃(Ω0,L+1) via Lemma A.3, and so, by
Hölder’s inequality∣∣∣∣∣

∫
Ω0,L+1

ψφ(|∇u0|)∇u0∇vdydx

∣∣∣∣∣ ≤ 2‖φ(|∇u0|)∇u0‖LΦ̃(Ω0,L+1)
‖v‖W 1,Φ(Ω0,L+1),

for all v ∈W 1,Φ(Ω0,L+1). Therefore, (3.11) asserts that f(wn − u0)→ 0, or equivalently,

(3.17)

∫
Ω0,L+1

ψφ(|∇u0|)∇u0(∇wn −∇u0)dydx→ 0.

Using again the Lemma A.3 and the boundedness of (wn) in W 1,Φ
loc (Ω0), there is C > 0 such

that ∫
Ω0,L+1

Φ̃(φ(|∇wn|)∇wn)dydx ≤ C, ∀n ∈ N,

implying that (φ(|∇wn|)∇wn) is bounded in LΦ̃(Ω0,L+1). So, by (3.12) and Hölder’s inequality,

(3.18)

∫
Ω0,L+1

(wn − u0)φ(|∇wn|)∇wn∇ψdydx→ 0.

Now, considering the sequence (ψwn) we have that (ψwn) ⊂W 1,Φ(Ω0), because ψ has compact
support, and by (3.14), passing to a subsequence if necessary, we can assume that

ψwn ⇀ ψu0 in W 1,Φ(Ω0,L+1) and ψwn → ψu0 a.e. Ω0.
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Consequently,

A(x, y)V ′(wn(x, y))(ψ(x, y)wn(x, y)− ψ(x, y)u0(x, y))→ 0 a.e. in Ω0,L+1.

From (2.3) and (3.13), there exist h ∈ L1(Ω0,L+1) and α > 0 such that, along a subsequence,∣∣A(x, y)V ′(wn)(ψwn − ψu0)
∣∣ ≤ αA|ψ|(h+ |u0|) ∈ L1(Ω0,L+1).

Applying the Lebesgue’s Dominated Convergence Theorem we obtain

(3.19)

∫
Ω0,L+1

A(x, y)V ′(wn)(ψwn − ψu0)dydx→ 0.

Finally, we would like point out that

(3.20) I ′(wn)(ψwn − ψu0)→ 0.

In fact, just note that∣∣I ′(wn)(ψwn − ψu0)
∣∣ ≤ ‖I ′(wn)‖∗‖ψwn − ψu0‖W 1,Φ(Ω0),

(ψwn) ⊂ X1,Φ(Ω0) is a bounded sequence in W 1,Φ(Ω0) and (wn) is a (PS)c sequence for I.
Recalling that

I ′(wn)(ψwn − ψu0) =

∫
Ω0,L+1

φ(|∇wn|)∇wn∇(ψwn − ψu0)dydx

+

∫
Ω0,L+1

A(x, y)V ′(wn)(ψwn − ψu0)dydx,

from where it follows by (3.19) and (3.20) that

(3.21)

∫
Ω0,L+1

φ(|∇wn|)∇wn∇(ψwn − ψu0)dydx→ 0.

Since ∇(ψwn − ψu0) = ψ∇wn + wn∇ψ − ψ∇u0 − u0∇ψ, we also have

∫
Ω0,L+1

ψφ(|∇wn|)∇wn(∇wn −∇u0)dydx =

∫
Ω0,L+1

φ(|∇wn|)∇wn∇(ψwn − ψu0)dydx

−
∫

Ω0,L+1

(wn − u0)φ(|∇wn|)∇wn∇ψdydx.

(3.22)

From (3.18), (3.21) and (3.22),

(3.23)

∫
Ω0,L+1

ψφ(|∇wn|)∇wn(∇wn −∇u0)dydx→ 0.

Finally, from (3.17), (3.23) and (3.16),∫
Ω0,L

(φ(|∇wn|)∇wn − φ(|∇u0|)∇u0)(∇wn −∇u0)dydx→ 0.

This limit combined with (3.15) leads to, along a subsequence,

〈φ(|∇wn|)∇wn − φ(|∇u0|)∇u0,∇wn −∇u0〉 → 0 a.e. in Ω0,L.

Applying a result found in Dal Maso and Murat [23], we infer that

∇wn(x, y)→ ∇u0(x, y) a.e. in Ω0,L.

As L > 0 is arbitrary, there exists a subsequence of (wn), still denoted by itself, such that

∇wn(x, y)→ ∇u0(x, y) almost everywhere in Ω0,
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finishing the proof of the lemma. �

The next lemma establishes the strong convergence for minimizing sequences of I on E.

Lemma 3.6. Let (un) ⊂ E with I(un) → c. Then, there exists u0 ∈ K such that, along a
subsequence,

‖un − u0‖W 1,Φ(Ω0) → 0.

Proof. Invoking Lemma 3.4 there is a sequence (wn) ⊂ Ẽ with I(wn)→ c and

(3.24) ‖un − wn‖W 1,Φ(Ω0) ≤
1

n
, ∀n ∈ N.

Hence there exits u0 ∈W 1,Φ
loc (Ω0) satisfying (3.11)-(3.14). Moreover,

(3.25) ‖un − u0‖LΦ(Ω0,L) ≤
1

n
+ ‖wn − u0‖LΦ(Ω0,L), ∀L > 0.

Thereby, by (3.12), u0 is the punctual limit of (un), u0 ∈ E and I(u0) = c, that is, u0 ∈ K.
Now, arguing as in [14, Lemma 4.9],

‖∇wn −∇u0‖LΦ(Ω0) → 0.

From (3.24),

‖∇un −∇u0‖LΦ(Ω0) ≤
1

n
+ ‖∇wn −∇u0‖LΦ(Ω0),

implying that

(3.26) ‖∇un −∇u0‖LΦ(Ω0) → 0.

Finally, according to Lemma 3.2, given ε > 0, there are lε > 0 and n0 ∈ N such that∫ +∞

lε

∫ 1

0
Φ(|u0 − 1|)dydx ≤ ε

2m
and

∫ +∞

lε

∫ 1

0
Φ(|un − 1|)dydx ≤ ε

2m
, ∀n ≥ n0.

So, it is easy to see that
(3.27)∫ +∞

lε

∫ 1

0
Φ(|un − u0|)dydx ≤ 2m−1

∫ +∞

lε

∫ 1

0
(Φ(|un − 1|) + Φ(|u0 − 1|))dydx ≤ ε, ∀n ≥ n0.

As Φ ∈ ∆2, (3.25) together with (3.27) gives

(3.28) ‖un − u0‖LΦ(Ω0) → 0.

Now, the lemma follows from (3.26) and (3.28). �

4. The Approximating Functionals

In the sequel, given j ∈ N ∪ {0}, let us define the sets

Ωj = R× [j, j + 1] and Tj = {(x, y) ∈ Ωj : |x| ≤ y} .

Associated with sets above, we consider

Ej =
{
w ∈W 1,Φ(Tj) : 0 ≤ w(x, y) ≤ 1 for x > 0 and w is odd in x

}
,

and the functional Ij : W 1,Φ(Tj)→ R ∪ {+∞} given by

Ij(w) =

∫∫
Tj

L(w)dydx.
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By a direct computation, we see that Ij is lower semicontinuous with respect to the weak
topology of W 1,Φ(Tj) and bounded from below. Moreover, since Ij(0) < +∞ the real number

cj := inf
w∈Ej

Ij(w)

is well defined. For each j ∈ N ∪ {0} let us also consider

Kj = {w ∈ Ej : Ij(w) = cj} .

Arguing as in the proof of Lemma 2.5, it is possible to prove the following result.

Lemma 4.1. For every j ∈ N∪{0}, Kj 6= ∅. Moreover, if uj ∈ Kj, then uj is a weak solution
in C1,α(Tj), for some α > 0, of

−∆Φuj +A(x, y)V ′(uj) = 0 in Tj ,

with 0 < uj(x, y) < 1 for x > 0,

∂yuj(x, j) = 0 for |x| < j and ∂yuj(x, j + 1) = 0 for |x| < j + 1.

As immediate consequence of the last lemma is the corollary below.

Corollary 4.2. For all j ∈ N ∪ {0} we have cj ≤ cj+1 < c.

Proof. Invoking Lemma 4.1, for each j ≥ 0 there exists uj+1 ∈ Kj+1. Now, considering the
function

uj(x, y) = uj+1(x, y + 1) for (x, y) ∈ Tj ,
we see that uj ∈ Ej and

cj ≤ Ij(uj) ≤ Ij+1(uj+1) = cj+1.

Finally, from Theorem 1.1, there exists v : R2 → R such that v ∈ E with I(v) = c and v is
1-periodic in the variable y. So, v ∈ Ej for any j ∈ N ∪ {0} and

cj ≤ Ij(v) < I(v) = c, ∀j ∈ N ∪ {0},

showing the desired result. �

If j > 1 and uj ∈ Kj , then arguing as in the end of Section 3, uj have an extension 2-periodic
vj in (−j, j)×R, i.e., there exists vj : (−j, j)×R→ R that is 2-periodic in the variable y such
that

vj = uj in (−j, j)× (j, j + 1).

Moreover, vj is a weak solution in C1,α
loc ((−j, j)× R,R), for some positive α, of the equation

−∆Φvj +A(x, y)V ′(vj) = 0 in (−j, j)× R.

An direct computation shows that

(4.1)

∫ j

−j

∫ j+1

j
L(uj)dydx =

∫ j

−j

∫ 1

0
L(vj)dydx.

From now on, given uj ∈ Kj , with j > 1, let’s fix vj as above. Then, we have the following
result.

Lemma 4.3. There exists L > 0 such that for j > L+ 1
4 , if uj ∈ Kj we must have

|uj(x, y)− 1| ≤ δ1, ∀(x, y) ∈ Tj with x ∈
(
L, j − 1

4

)
,

where δ1 was given in (V3).
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Proof. Arguing by contradiction, assume that there is a sequence of indices (jn) ⊂ (0,+∞)
with jn → +∞ such that for each jn there exists ujn ∈ Kjn and points

(xn, yn) ∈
(

0, jn −
1

4

)
× (jn, jn + 1)

with xn → +∞ satisfying

(4.2) 1− δ1 > ujn(xn, yn) > 0.

Given j > 1, we fix the rectangles

Qj =

(
−j +

1

8
, j − 1

8

)
× (j − 1, j + 2) and Q̃j =

(
−j +

1

4
, j − 1

4

)
× (j, j + 1).

Now, taking η0 ∈ (0, 1
32) and (x, y) ∈ Q̃j , it is clear that

Bη0(x, y) ⊂ B2η0(x, y) ⊂ Qj .
Defining the operator

B(x, y) = A(x, y)V ′(vj(x, y)) for (x, y) ∈ Qj ,
there exists Λ1 > 0 such that |B(x, y)| ≤ Λ1 for every (x, y) ∈ Qj . So, since vj is a weak
solution of the equation

∆Φw +B(x, y) = 0 in Qj

with ‖vj‖L∞(Qj) ≤ 1, it follows from [45, Theorem 1.7] that there is C > 0 such that

(4.3) ‖vj‖C1(Q̃j) ≤ C, ∀j ∈ N,

and so,

‖vj‖C1(Bη0 (x,y)) ≤ C, ∀(x, y) ∈ Q̃j .

From this, taking η < η0 such that Cη < δ1/2 and invoking the Mean Value Theorem, we
arrive at

(4.4) |vjn(x, y)− vjn(xn, yn)| ≤ Cη < δ1

2
, ∀(x, y) ∈ Bη(xn, yn) and ∀n ∈ N.

Thereby, from (4.2) and (4.4),

|1− ujn(x, y)| ≥ δ1

2
, ∀(x, y) ∈ Bη(xn, yn) ∩ Q̃jn ,

leading to

‖1− ujn(x, ·)‖L∞(jn,jn+1) >
δ1

2
, ∀x ∈ (xn − η/2, xn).

As the constant of embedding W 1,Φ(jn, jn + 1) ↪→ L∞(jn, jn + 1) are independent of n ∈ N,
because such constants depend only on the length of the intervals (jn, jn+ 1), then there exists
r > 0 such that

‖1− ujn(x, ·)‖W 1,Φ(jn,jn+1) ≥ r, ∀x ∈ (xn − η/2, xn).

Now, setting
ũjn(x, y) = ujn(x, y + jn), for (x, y) ∈ (−jn, jn)× (0, 1),

we obtain
‖1− ũjn(x, ·)‖W 1,Φ(0,1) ≥ r, ∀x ∈ (xn − η/2, xn).

From Lemma 2.3, there exists µr > 0 satisfying

(4.5)

∫ xn

xn−η/2

∫ 1

0
L(ũjn)dydx ≥ (2µr)

m
m−1

η

2
, ∀n ∈ N.
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On the other hand, for each n ∈ N it is well known that

I0,jn(ũjn) =

∫ jn

−jn

∫ 1

0
L(ũjn)dydx =

∫ jn

−jn

∫ jn+1

jn

L(ujn)dydx ≤ I(ujn) = cjn < c.

Using the fact that jn → +∞, it follows from the Lemma 3.1 that there are x+ > 0 and n0 ∈ N
satisfying ∫ jn

x+

∫ 1

0
L(ũjn)dydx <

3

2
λδ, ∀n ≥ n0.

Next, we take λδ arbitrarily small of such way that∫ jn

x+

∫ 1

0
L(ũjn)dydx < (2µr)

m
m−1

η

2
, ∀n ≥ n0.

Therefore, as xn → +∞, increasing n0 if necessary, we find∫ xn

xn−η/2

∫ 1

0
L(ũjn)dydx ≤

∫ xn

x+

∫ 1

0
L(ũjn)dydx ≤

∫ jn

x+

∫ 1

0
L(ũjn)dydx < (2µr)

m
m−1

η

2
,

for any n ≥ n0, which contradicts (4.5), and the proof is over. �

In what follows, our goal is to get an estimate from above of the exponential type for c− cL.
In order to do that, we fix the real function

ζ(x) = δ1

cosh
(
a
(
x− j− 1

4
+L

2

))
cosh

(
a
j− 1

4
−L

2

) , x ∈ R,

where L > 0 was given in the Lemma 4.3 for some constant a > 0 that will chose later. A
simple computation provides ζ ′′(x) = a2ζ(x) for all x ∈ R, which together with (φ4) permit to
use the same idea found in [14] to show that(

φ(|ζ ′(x)|)ζ ′(x)
)′ ≤ κa2φ(|ζ ′(x)|)ζ(x), ∀x ∈ R.

Since |ζ ′(x)| ≤ aζ(x) for each x ∈ R, taking a < 1 and using (φ3), we get φ(|ζ ′(x)|) ≤ φ(ζ(x))
for every x ∈ R, and so,

−
(
φ(|ζ ′(x)|)ζ ′(x)

)′
+ κa2φ(ζ(x))ζ(x) ≥ 0, ∀x ∈ R.

Therefore, if we define w(x, y) = ζ(x) for each (x, y) ∈ R2, then

(4.6) −∆Φw + κa2φ(w)w ≥ 0 in R2.

Now, fixing uj ∈ Kj satisfying Lemma 4.3 and setting the function

ν(x, y) = 1− vj(x, y), (x, y) ∈ (−j, j)× R,

it follows from Lemma 4.3 that 0 < vj(x, y) < 1 for any x ∈ (0, j), and so, since vj is a periodic
function in the variable y and continuous, there exists bj > 0 verifying

0 < bj ≤ vj(x, y) < 1, ∀(x, y) ∈
[
L, j − 1

4

]
× R.

According to (V4),

(4.7) V ′(vj) ≤ −ωbjφ(ν)(ν) in

(
L, j − 1

4

)
× R.

In what follows, we take a > 0 sufficiently small such that κa2 < Abjω.
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Claim 4.4. Let j0 ∈ N and ψ ∈ X1,Φ
∗ (R× (−j0, j0)) with ψ ≥ 0, where

X1,Φ
∗ (R× (−j0, j0)) =

{
u ∈W 1,Φ(R× (−j0, j0)) with u(x, y) = 0 for x 6∈

(
L, j − 1

4

)}
,

then ∫
R

∫ j0

−j0

(
φ(|∇ν|)∇ν∇ψ + κa2φ(ν)νψ

)
dydx ≤ 0.

In fact, from (4.7) it may be concluded that∫
R

∫ j0

−j0
(φ(|∇ν|)∇ν∇ψ + κa2φ(ν)νψ)dydx =

∫ j− 1
4

L

∫ j0

−j0
(−φ(|∇vj |)∇vj∇ψ + κa2φ(ν)νψ)dydx

=

∫ j− 1
4

L

∫ j0

−j0
(A(x, y)V ′(vj)ψ + κa2φ(ν)νψ)dydx

≤
∫ j− 1

4

L

∫ j0

−j0
(A(x, y)V ′(vj)ψ + ωA(x, y)bjφ(ν)νψ)dydx

≤
∫ j− 1

4

L

∫ j0

−j0
(A(x, y)V ′(vj)ψ −A(x, y)V ′(vj)ψ)dydx = 0,

proving the Claim 4.4.
On the other hand, the definitions of ν and w together with Lemma 4.3 ensure that

(4.8) ν(x, y) ≤ w(x, y) on

{
L, j − 1

4

}
× R.

Lemma 4.5. It holds that ν(x, y) ≤ w(x, y) in (L, j − 1/4)× R.

Proof. Suppose by contradiction that the lemma is false. Then, we can find
(x1, y1) ∈ (L, j − 1/4) × R such that ν(x1, y1) > w(x1, y1). Let j0 ∈ N such that (x1, y1) ∈
(L, j − 1/4)× (−j0, j0). Now, from (4.8) the function ψ∗ : R× (−j0, j0)→ R given by

ψ∗(x, y) =

{
(ν − w)+(x, y), if x ∈ (L, j − 1/4)
0, if x 6∈ (L, j − 1/4)

is well defined. Moreover, ψ∗ ∈ X1,Φ
∗ (R × (−j0, j0)) and ψ∗ is a nonnegative continuous.

Therefore, according to Claim 4.4 and (4.6),∫
R

∫ j0

−j0

(
φ(|∇w|)∇w∇ψ∗ + κa2φ(w)wψ∗

)
dydx ≥ 0

and ∫
R

∫ j0

−j0

(
φ(|∇ν|)∇ν∇ψ∗ + κa2φ(ν)νψ∗

)
dydx ≤ 0,

which leads to∫∫
P

(
(φ(|∇ν|)∇ν − φ(|∇w|)∇w)∇(ν − w) + κa2(φ(ν)ν − φ(w)w)(ν − w)

)
dydx ≤ 0,

where P = {(x, y) ∈ R × (−j0, j0) : ν(x, y) ≥ w(x, y)}. From (3.15), ν(x, y) ≤ w(x, y) for all
(x, y) ∈ (L, j − 1/4)× (−j0, j0), which is impossible. �

Now, we are ready to prove an exponential estimate from above to c− cj .
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Lemma 4.6. There are θ1, θ2 > 0 such that

0 < c− cj ≤ θ1e
−θ2j , ∀j ∈ N ∪ {0}.

In particular, cj → c as j → +∞.

Proof. First of all, we note that by Lemma 4.5,

|vj(x, y)− 1| ≤ δ1

cosh
(
a
(
x− j− 1

4
+L

2

))
cosh

(
a
j− 1

4
−L

2

) , ∀(x, y) ∈
(
L, j − 1

4

)
× R.

Choosing x+ =
j− 1

4
+L

2 , we have that

|vj(x+, y)− 1| ≤ δ1

cosh
(
a
j− 1

4
−L

2

) ∀y ∈ R,

which implies

(4.9) |vj(x+, y)− 1| ≤ 2δ1e
−a

2
(j− 1

4
−L) := ρj and Φ(|vj(x+, y)− 1|) ≤ Φ(ρj) ∀y ∈ R.

In the sequel, we fix j sufficiently large such that x+ + ρj ≤ j and

ṽj(x, y) =


vj(x, y), if 0 ≤ x ≤ x+ and y ∈ R
vj(x+, y) + 1

ρj
(x− x+)(1− vj(x+, y)), if x+ ≤ x ≤ x+ + ρj and y ∈ R

1, if x+ + ρj ≤ x and y ∈ R
−ṽj(−x, y), if x ≤ 0 and y ∈ R.

Hereafter, let us identify ṽj |Ω0 with the ṽj itself, and consequently ṽ ∈ E and c ≤ I(ṽ). Now
let us take a look at some important estimates for the end of the proof.

Claim 4.7. |∂xṽj | ≤ 1 in (x+, x+ + ρj)× R.

Indeed, note that ∂xṽj(x, y) = 1
ρj

(1− vj(x+, y)) in (x+, x+ + ρj)× R. From (4.9),

|∂xṽj(x, y)| ≤ 1

ρj
|1− vj(x+, y)| ≤ 1, ∀(x, y) ∈ (x+, x+ + ρj)× R.

Claim 4.8. |∂yṽj | ≤ 2C in (x+, x+ + ρj)× R, where C > 0 was given in (4.3).

By definition of ṽj , |∂yṽj(x, y)| ≤ 2|∂yvj(x+, y)| in (x+, x+ + ρj)×R. Now, the definition of
vj combined with (4.3) leads to

|∂yṽj(x, y)| ≤ 2C ∀(x, y) ∈ (x+, x+ + ρj)× R.

Claim 4.9. A(x, y)V (ṽj) ≤ AwΦ(ρj) in (x+, x+ + ρj)× R.

From (2.6),

A(x, y)V (ṽj(x, y)) ≤ AwΦ(|ṽj(x, y)− 1|) ∀(x, y) ∈ (x+, x+ + ρj)× R.
Now, the definition of ṽj together with (4.9) yields

A(x, y)V (ṽj(x, y)) ≤ AwΦ(|vj(x+, y)− 1|) ≤ AwΦ(ρj) ∀(x, y) ∈ (x+, x+ + ρj)× R,
proving the Claim 4.9.

According to Claims 4.7, 4.8 and 4.9,∫ x++ρj

x+

∫ 1

0
L(ṽj)dydx ≤

∫ x++ρj

x+

∫ 1

0
(2mΦ(|∂xṽj |) + 2mΦ(|∂yṽj |) +A(x, y)V (ṽj)) dydx

≤ 2mΦ(1)ρj + 2mΦ(2C)ρj +AwΦ(ρj)ρj .
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Now, since ρj → 0 as j → +∞, there is a constant M̃ > 0, independent of j and ṽj such that∫ x++ρj

x+

∫ 1

0
L(ṽj)dydx ≤ M̃ρj ,

and so, by (4.1),

c ≤ I(ṽj) =

∫ x++ρj

−x+−ρj

∫ 1

0
L(ṽj)dydx ≤

∫ j

−j

∫ 1

0
L(vj)dydx+ 2

∫ x++ρj

x+

∫ 1

0
L(ṽj)dydx

≤
∫ j

−j

∫ j

j+1
L(uj)dydx+ 2M̃ρj ≤ Ij(uj) + 2M̃ρj = cj + 2M̃ρj ,

that is,

0 < c− cj ≤ 4M̃δ1e
−a

2 (j− 1
4
−L),

for j sufficiently large. Therefore, it is possible to find real numbers θ1, θ2 > 0 satisfying
precisely the assertion of the lemma. �

Next, we establish further compactness property concerning the functionals Ijn .

Lemma 4.10. Let jn → +∞ and ujn ∈ Ejn such that Ijn(ujn)− cjn → 0 as n→ +∞. Then,
there exists u0 ∈ K verifying

‖ujn − τjnu0‖W 1,Φ(Tjn ) → 0 as n→ +∞,

where τju0(x, y) = u0(x, y − j) for all j ∈ N.

Proof. Setting
wjn(x, y) = ujn(x, y + jn), for (x, y) ∈ (−jn, jn)× [0, 1],

it is easily seen that I0,jn(wjn) ≤ Ijn(ujn). Since cjn < c for all n ∈ N and Ijn(ujn) = cjn+on(1),

(4.10) I0,jn(wjn) < c+ on(1), ∀n ∈ N.

We claim that for each n ∈ N there exists x+,n ∈ ( jn2 , jn) satisfying

αn := ‖wjn(x+,n, ·)− 1‖W 1,Φ(0,1) → 0 as n→ +∞.
Indeed, if the claim is not true, then there is r > 0 such that, for some subsequence,

‖wjn(x, ·)− 1‖W 1,Φ(0,1) ≥ r, ∀x ∈ (
jn
2
, jn) and ∀n ∈ N.

Invoking Lemma 2.3, there exists µr > 0 verifying

I0,jn(wjn) ≥
∫ jn

jn
2

∫ 1

0
L(wjn)dydx ≥ (2µr)

m
m−1

jn
2
.

Taking jn sufficiently large we have I0,jn(wjn) > c+ on(1), contrary to (4.10), and the claim is
proved. Without loss of generality, we can assume that αn > 0 for any n ∈ N, and so we define
the function w̃jn : Ω0 → R by

w̃jn(x, y) =


wjn(x, y), if 0 ≤ x ≤ x+,n

wjn(x+,n, y) + 1
αn

(x− x+,n)(1− wjn(x+,n, y)), if x+,n ≤ x ≤ x+,n + αn
1, if x+,n + αn ≤ x
−w̃jn(−x, y), if x ≤ 0.

Thus, w̃jn ∈ E and

(4.11) c ≤ I(w̃jn) = I0,x+,n(wjn) + 2

∫ x+,n+αn

x+,n

∫ 1

0
L(w̃jn)dydx.
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On the other hand, from (A.1),

(4.12) |∂xw̃jn | ≤ Λ in (x+,n, x+,n + αn)× (0, 1), ∀n ∈ N.

Indeed, using (A.1), for each (x, y) ∈ (x+,n, x+,n + αn)× (0, 1) we have

|∂xw̃jn(x, y)| = 1

αn
|1− wjn(x+,n, y)| ≤ 1

αn
‖1− wjn(x+,n, ·)‖L∞(0,1) ≤ Λ, ∀n ∈ N.

Moreover, an easy computation shows that

(4.13) |∂yw̃jn(x, y)| ≤ 2|∂ywjn(x+,n, y)|, ∀(x, y) ∈ (x+,n, x+,n + αn)× (0, 1).

Now, since αn → 0 we can take n sufficiently large such that αn < 1, and for such values of n,
the convexity of Φ ensures that∫ 1

0
Φ(|∂ywjn(x+,n, y)|)dy =

∫ 1

0
Φ

(
‖∂ywjn(x+,n, ·)‖LΦ(0,1)

|∂ywjn(x+,n, y)|
‖∂ywjn(x+,n, ·)‖LΦ(0,1)

)
dy

≤ ‖∂ywjn(x+,n, ·)‖LΦ(0,1)

∫ 1

0
Φ

(
|∂ywjn(x+,n, y)|

‖∂ywjn(x+,n, ·)‖LΦ(0,1)

)
dy ≤ αn,

that is,

(4.14)

∫ 1

0
Φ(|∂ywjn(x+,n, y)|)dy ≤ αn.

A similar argument works to prove that A(x, y)V (w̃jn) ≤ AwΦ(|1 − wjn(x+,n, y)|) in
(x+,n, x+,n + αn)× (0, 1) and

(4.15)

∫ 1

0
Φ(|1− wjn(x+,n, y)|)dy ≤ αn.

Therefore, we conclude from (4.12)-(4.15) that

(4.16)

∫ x+,n+αn

x+,n

∫ 1

0
L(w̃jn)dydx→ 0 as n→ +∞.

According to (4.10), (4.11) and (4.16), I(w̃jn)→ c. From Lemma 3.6, there exists u0 ∈ K such
that, along a subsequence,

‖w̃jn − u0‖W 1,Φ(Ω0) → 0.

As w̃jn(x, y) = ujn(x, y + jn) for |x| ≤ x+,n and y ∈ [0, 1], we deduce

(4.17) ‖ujn − τjnu0‖W 1,Φ([−x+,n,x+,n]×[jn,jn+1]) → 0 as n→ +∞.

By definition of w̃jn ,

I(w̃jn) =

∫ x+,n

−x+,n

∫ jn+1

jn

L(ujn)dydx+ 2

∫ x+,n+αn

−x+,n

∫ 1

0
L(w̃jn)dydx

that combines with (4.16) to provide

(4.18)

∫ x+,n

−x+,n

∫ jn+1

jn

L(ujn)dydx→ c.

Setting R+,n = Tjn \ ([−x+,n, x+,n]× [jn, jn + 1]), we have∫∫
R+,n

L(ujn)dydx = Ijn(ujn)−
∫ x+,n

−x+,n

∫ jn+1

jn

L(ujn)dydx.
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Now, the estimate Ijn(ujn) = cjn + on(1) together with (4.18) ensures that

(4.19)

∫∫
R+,n

L(ujn)dydx→ 0.

On the other hand, by (2.6),

∫∫
R+,n

(Φ(|∇ujn |) + Φ(|ujn − 1|))dydx ≤
∫∫

R+,n

(
Φ(|∇ujn |) +

1

w A
A(x, y)V (ujn)

)
dydx

≤ max

{
1,

1

w A

}∫∫
R+,n

L(ujn)dydx.

(4.20)

This combined with (4.19) leads to

(4.21) ‖ujn − 1‖W 1,Φ(R+,n) → 0.

Finally, by Lemma 3.2, we also have that Φ(|∇u0|),Φ(|u0 − 1|) ∈ L1(Ω0), and so,∫∫
R+,n

Φ(|∇τjnu0|)dydx→ 0 and

∫∫
R+,n

Φ(|τjnu0 − 1|)dydx→ 0.

As Φ ∈ ∆2, these limits guarantee that

(4.22) ‖τjnu0 − 1‖W 1,Φ(R+,n) → 0.

Now the lemma follows from (4.21), (4.22) and (4.17). �

5. Saddle-Type Solutions

In this last section we collect the results obtained above to prove Theorem 1.2. To this aim,
let us consider

Γ =
∞⋃
j=0

Tj and Γk = Γ ∩ {y < k} for each k ∈ N.

Setting

E∞ =
{
w ∈W 1,Φ

loc (Γ) : 0 ≤ w(x, y) ≤ 1 for x ≥ 0 and w is odd in x
}
,

we infer that if w ∈ E∞ then w|Tj ∈ Ej for every j ∈ N ∪ {0}. Hereafter, let us identify w|Tj
with w itself. With everything, we may define the functional J : W 1,Φ

loc (Γ)→ R ∪ {+∞} by

J(w) =
∞∑
j=0

(Ij(w)− cj) .

Clearly, J is bounded from below on E∞. Here, we would like point out that there exists
u ∈ E∞ such that J(u) < +∞. Indeed, from Theorem 1.1, there exists a function u∗ : R2 → R
such that u∗ ∈ E∞ with I(u∗) = c. Invoking Lemma 4.6,

Ij(u∗)− cj ≤ I(u∗)− cj = c− cj ≤ θ1e
−θ2j , ∀j ∈ N ∪ {0}.

Thus,

J(u∗) =
∞∑
j=0

(Ij(u∗)− cj) ≤ θ1

∞∑
j=0

e−θ2j < +∞,

and the real number
d∞ := inf

w∈E∞
J(w)

is well defined.
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In what follows, if (un) ⊂W 1,Φ
loc (Γ) and u ∈W 1,Φ

loc (Γ), we write un ⇀ u in W 1,Φ
loc (Γ) to denote

that un ⇀ u in W 1,Φ(Ω) for any Ω relatively compact in Γ. Here we would like point out that
the same arguments found in [14, Lemma 6.2] work to show that

un ⇀ u in W 1,Φ
loc (Γ)⇒ J(u) ≤ lim inf

n→+∞
J(un).

From this, we are ready to show the following result.

Lemma 5.1. There exists u ∈ E∞ such that J(u) = d∞.

Proof. Let (wn) ⊂ E∞ be a minimizing sequence for J . Then there is M > 0 satisfying
J(wn) ≤M for every n ∈ N. Thereby, for each k ∈ N fixed,∫∫

Γk

Φ(|∇wn|)dydx ≤
∫∫

Γk

L(wn)dydx ≤
k∑
j=0

Ij(wn) ≤ J(wn) +
k∑
j=0

cj ≤M + (k + 1)c

that together with ‖wn‖L∞(Γ) ≤ 1 ensures that (wn) is bounded in W 1,Φ
loc (Γ). By a classical

diagonal argument, for some subsequence, there exists u ∈W 1,Φ
loc (Γ) such that

wn ⇀ u in W 1,Φ
loc (Γ) and wn(x, y)→ u(x, y) a.e. in Γ.

Next, by pointwise convergence, u(x, y) = −u(−x, y) for almost every (x, y) ∈ Γ and
0 ≤ u(x, y) ≤ 1 for almost every (x, y) ∈ Γ with x ≥ 0, that is, u ∈ E∞. Moreover, J(u) = d∞,
which completes the proof. �

Setting
K∞ = {w ∈ E∞ : J(w) = d∞} ,

we have by the previous lemma that K∞ 6= ∅. Repeating the arguments used in the proof of
Theorem 2.5, it is possible to prove the following result.

Lemma 5.2. If u ∈ K∞, then for any ψ ∈W 1,Φ(R2) with ψ compact support in R2 we have∫∫
Γ

(
φ(|∇u|)∇u∇ψ +A(x, y)V ′(u)ψ

)
dydx = 0.

As a consequence of Lemma 5.2, if u ∈ K∞ then u is weak solution of

−∆Φw +A(x, y)V ′(w) = 0 in Γ.

Elliptic regularity theory yields that u is a solution in C1,α
loc (Γ), for some α > 0. Furthermore,

arguing as in the proof of Theorem 1.1 we also have that

0 < u(x, y) < 1 for (x, y) ∈ Γ with x > 0.

Finally, we can now prove our main result.
Proof of Theorem 1.2.
The existence of saddle-type solution v will be done via a recursive reflection of the function
u : Γ→ R given by Lemma 5.1. First of all, let us consider the rotation matrix

T =

(
0 1
−1 0

)
,

that is, T (x, y) = (y,−x) for any (x, y) ∈ R2. Setting Γ0 = Γ, we designate Γi = T i(Γ) for
i = 0, 1, 2, 3, i.e., Γi is the iπ2 -rotated de Γ. Consequently,

R2 =

3⋃
i=0

Γi, T−i(Γi) = Γ, and int(Γi) ∩ int(Γj) = ∅ for i 6= j.
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Finally, we define the function v : R2 → R by

v(x, y) = (−1)iu
(
T−i(x, y)

)
, ∀(x, y) ∈ Γi.

Note that v|Γi is the reflection of v|Γi−1 with respect to the axis separating Γi−1 from Γi, for

any i = 1, 2, 3. From the properties of the reflection operator, v ∈ W 1,Φ
loc (R2). Now, we note

that if ψ ∈ W 1,Φ(R2) with compact support in R2, then ψ ◦ T i ∈ W 1,Φ(R2) and has compact
support in R2, because T i is a linear operator. Moreover, from (A4),

A
(
T i(x, y)

)
= A(x, y), ∀(x, y) ∈ R2.

Thus, invoking Lemma 5.2,∫
Γi

(φ(|∇v|)∇v∇ψ+A(x, y)V ′(v)ψ)dydx

= (−1)i
∫

Γ

(
φ(|∇u|)∇u∇(ψ ◦ T i) +A(x, y)V ′(u)(ψ ◦ T i)

)
dydx = 0.

Therefore, for any ψ ∈W 1,Φ(R2) with compact support in R2,∫
R2

(φ(|∇v|)∇v∇ψ+A(x, y)V ′(v)ψ)dydx

=
3∑
i=0

∫
Γi

(
φ(|∇v|)∇v∇ψ +A(x, y)V ′(v)ψ

)
dydx = 0.

Furthermore, by regularity arguments, v is a weak solution of equation (PDE) in C1,α
loc (R2), for

some α > 0. A direct computation shows that v checks the conditions (a)-(c) of Theorem 1.2.
To complete the proof, we are going to prove that v satisfies item (d). Since J(v) = d∞ < +∞,
we must have Ij(v)− cj → 0 as j → +∞. By Lemma 4.10, there is u0 ∈ K such that

(5.1) ‖v − τju0‖W 1,Φ(Tj) → 0 as j → +∞.

Now, we claim that

(5.2) ‖v − τju0‖L∞(Tj) → 0 as j → +∞.
In fact, assume by contradiction that there exits ε0 > 0 such that for each n ∈ N there are
jn > n and (xn, yn) ∈ Tjn satisfying

|v(xn, yn)− τju0(xn, yn)| ≥ 3ε0.

From Mean Value Theorem, there is θ > 0 sufficiently small such that

|τjnu0(x, y)− τjnu0(xn, yn)| ≤ ε0, ∀(x, y) ∈ Bθ(xn, yn) ∩ Tjn
and

|v(x, y)− v(xn, yn)| ≤ ε0, ∀(x, y) ∈ Bθ(xn, yn) ∩ Tjn .
Consequently,∫∫

Tjn

Φ(|v − τjnu0|)dydx ≥ Φ(ε0) |Bθ(xn, yn) ∩ Tjn | ≥ β0, ∀n ∈ N,

for some β0 > 0. As Φ ∈ ∆2, there is r > 0 such that

‖v − τjnu0‖LΦ(Tjn ) ≥ r, ∀n ∈ N,

which contradicts (5.1). Thereby, from (5.2), given ε > 0 there is j0 > 0 such that

|v(x, y)− τju0(x, y)| < ε

2
, ∀(x, y) ∈ Tj and ∀j > j0.
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On the other hand, since u0(x, y) → 1 as x → +∞ uniformly in y ∈ [0, 1] we may take j0
sufficiently large satisfying

|τju0(x, y)− 1| < ε

2
, ∀(x, y) ∈ Tj with x > j0 and j ≥ 0.

Therefore,

|v(x, y)− 1| < ε, ∀x > j0 and y > j0.

A similar argument works to prove that

|v(x, y) + 1| < ε, ∀x < −j0 and y > j0.

Gathering these estimates together with (5.2) we conclude the proof the theorem. 2

The above proof suggests the following behavior of the solution v.

Corollary 5.3. Let v be given as in Theorem 1.2. Then, the following hold:

(a) v(x, y)→ 1 as x→ +∞ and y → +∞,
(b) v(x, y)→ −1 as x→ −∞ and y → +∞,
(c) v(x, y)→ −1 as x→ +∞ and y → −∞,
(d) v(x, y)→ 1 as x→ −∞ and y → −∞.

Appendix A. Basic Results About Orlicz-Sobolev Spaces

Here we give a brief review of Orlicz-Sobolev spaces. The reader can find more details
in [1, 51]. We recall that a continuous function Φ : R→ [0,+∞) is a N-function if:

i) Φ is convex,
ii) Φ(t) = 0⇔ t = 0,

iii) Φ is even,

iv) lim
t→0

Φ(t)

t
= 0 and lim

t→+∞

Φ(t)

t
= +∞.

Moreover, we say that a N-function Φ verifies the ∆2-condition (Φ ∈ ∆2 for short) if there
are constants K > 0 and t0 ≥ 0 such that

Φ(2t) ≤ KΦ(t), ∀t ≥ t0. (∆2)

Below are some examples of N-functions that satisfy (∆2) with t0 = 0:

(a) Φ1(t) =
|t|p

p
with 1 < p < +∞,

(b) Φ2(t) =
|t|p

p
+
|t|q

q
for 1 < p < q < +∞,

(c) Φ3(t) = (1 + |t|) ln(1 + |t|)− |t|,
(d) Φ4(t) = (1 + t2)γ − 1 with γ > 1,

(e) Φ5(t) =
∫ t

0 s
1−γ(sinh−1 s)βds with 0 ≤ γ < 1 and β > 0.

An N-function that does not satisfy (∆2) is Φ(t) = (et
2 − 1)/2.

If Ω is an open set of RN (N ≥ 1) and Φ is a N -function, the Orlicz space associated with
Φ is defined by

LΦ(Ω) =

{
u ∈ L1

loc(Ω) :

∫
Ω

Φ

(
|u|
λ

)
dx < +∞ for some λ > 0

}
.

The space LΦ(Ω) is a Banach space endowed with the Luxemburg norm given by

‖u‖LΦ(Ω) = inf

{
λ > 0 :

∫
Ω

Φ

(
|u|
λ

)
dx ≤ 1

}
.
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When Φ ∈ ∆2,

LΦ(Ω) =

{
u ∈ L1

loc(Ω) :

∫
Ω

Φ(|u|)dx < +∞
}

and

∫
Ω

Φ

(
|u|

‖u‖LΦ(Ω)

)
dx = 1.

The corresponding Orlicz-Sobolev space is defined as the Banach space

W 1,Φ(Ω) =

{
u ∈ LΦ(Ω) :

∂u

∂xi
= uxi ∈ LΦ(Ω), i = 1, ..., N

}
,

endowed with the norm

‖u‖W 1,Φ(Ω) = ‖∇u‖LΦ(Ω) + ‖u‖LΦ(Ω).

The complementary function Φ̃ associated with Φ is defined by Legendre’s transformation

Φ̃(s) = max
t≥0
{st− Φ(t)} for s ≥ 0.

Moreover, Φ̃ is an N-function and the functions Φ and Φ̃ are complementary each other. From
inequality,

st ≤ Φ(t) + Φ̃(s), ∀s, t ≥ 0, (Young type inequality)

an immediate consequence is the Hölder type inequality∫
Ω
|uv|dx ≤ 2‖u‖LΦ(Ω)‖v‖LΦ̃(Ω)

, for all u ∈ LΦ(Ω) and v ∈ LΦ̃(Ω).

If Φ and Φ̃ satisfy the ∆2-condition, then the spaces LΦ(Ω) and W 1,Φ(Ω) are reflexive and
separable. Under the ∆2-condition,

un → u in LΦ(Ω)⇔
∫

Ω
Φ(|un − u|)dx→ 0

and

un → u in W 1,Φ(Ω)⇔
∫

Ω
Φ(|un − u|)dx→ 0 and

∫
Ω

Φ (|∇un −∇u|) dx→ 0.

As is mentioned in [14,37,38], we have the next four lemmas.

Lemma A.1. Let Φ be a N -function of the form (1.1) satisfying (φ1)-(φ2). Set

ξ0(t) = min
{
tl, tm

}
and ξ1(t) = max

{
tl, tm

}
, ∀t ≥ 0.

Then Φ satisfies

ξ0(t)Φ(s) ≤ Φ(st) ≤ ξ1(t)Φ(s), ∀s, t ≥ 0

and

ξ0

(
‖u‖LΦ(Ω)

)
≤
∫

Ω
Φ(u)dx ≤ ξ1

(
‖u‖LΦ(Ω)

)
, ∀u ∈ LΦ(Ω).

Lemma A.2. If Φ is a N -function of the form (1.1) satisfying (φ1)-(φ2), then Φ, Φ̃ ∈ ∆2.

Lemma A.3. If Φ is a N -function of the form (1.1) satisfying (φ1)-(φ2), then

Φ̃ (φ(t)t) ≤ Φ(2t), ∀t ≥ 0.

Lemma A.4. Let Φ be a N -function of the form (1.1) satisfying (φ1)-(φ2). If Ω is a bounded
domain in RN , then

a) LΦ(Ω) ↪→ Ll(Ω),
b) W 1,Φ(Ω) ↪→W 1,l(Ω).
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It is well known that W 1,l(0, 1) ↪→ L∞(0, 1) (see for instance [20, Corollary 9.14]). By
Lemma A.4 -b),

W 1,Φ(0, 1) ↪→ L∞(0, 1).

From now on, Λ > 0 is a constant satisfying

(A.1) ‖u‖L∞(0,1) ≤ Λ‖u‖W 1,Φ(0,1) ∀u ∈W 1,Φ(0, 1).

To end this section, assuming that the N-function Φ is C1 we get

(A.2) Φ(|w|)− Φ(|z|) ≥ Φ′(|z|) z
|z|
.(w − z), ∀w, z ∈ RN , z 6= 0,

where z.w denotes the usual inner product in RN .
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