A computationally efficient octave-band graphic equalizer having a linear-phase response is introduced. The linear-phase graphic equalizer is useful in audio applications in which phase distortion is not tolerated, such as in multichannel equalization, parallel processing, phase compatibility of audio equipment, and crossover network design. The structure is based on the interpolated finite impulse response (IFIR) philosophy. The proposed octave-band graphic equalizer uses one prototype low-pass filter, which is a half-band FIR filter designed using the window method. Stretched versions of the prototype filter and its complementary high-pass filter implement all ten band filters needed. The graphic equalizer is realized in the parallel form, in which the outputs of all band filters, scaled with their individual command gain, are added to compute the equalized output signal. The command gains can be used directly as filter band gains. The number of operations needed per sample is only slightly more than that needed for the graphic equalizer based on minimum-phase recursive filters. A comparison with other implementation approaches demonstrates that the proposed structure requires 99% fewer operations than a high-order FIR filter. The proposed filter uses 39% fewer operations per sample than the fast Fourier transform--based filtering method and causes over 78% less latency.
Linear-Phase Octave Graphic Equalizer / Bruschi, Valeria; Välimäki, Vesa; Liski, Juho; Cecchi, Stefania. - In: AES. - ISSN 1549-4950. - 70:6(2022), pp. 435-445. [10.17743/jaes.2022.0014]
Linear-Phase Octave Graphic Equalizer
Bruschi, Valeria
;Cecchi, Stefania
2022-01-01
Abstract
A computationally efficient octave-band graphic equalizer having a linear-phase response is introduced. The linear-phase graphic equalizer is useful in audio applications in which phase distortion is not tolerated, such as in multichannel equalization, parallel processing, phase compatibility of audio equipment, and crossover network design. The structure is based on the interpolated finite impulse response (IFIR) philosophy. The proposed octave-band graphic equalizer uses one prototype low-pass filter, which is a half-band FIR filter designed using the window method. Stretched versions of the prototype filter and its complementary high-pass filter implement all ten band filters needed. The graphic equalizer is realized in the parallel form, in which the outputs of all band filters, scaled with their individual command gain, are added to compute the equalized output signal. The command gains can be used directly as filter band gains. The number of operations needed per sample is only slightly more than that needed for the graphic equalizer based on minimum-phase recursive filters. A comparison with other implementation approaches demonstrates that the proposed structure requires 99% fewer operations than a high-order FIR filter. The proposed filter uses 39% fewer operations per sample than the fast Fourier transform--based filtering method and causes over 78% less latency.File | Dimensione | Formato | |
---|---|---|---|
Linear-phase_octave_graphic_equalizer.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
JAES__Linear_phase_Graphic_EQ_FINAL_for_submission.pdf
accesso aperto
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
3.77 MB
Formato
Adobe PDF
|
3.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.