Water-level monitoring systems are fundamental for flood warnings, disaster risk assessment and the periodical analysis of the state of reservoirs. Many advantages can be obtained by performing such investigations without the need for field measurements. In this paper, a specific method for the evaluation of the water level was developed using photogrammetry that is derived from images that were recorded by unmanned aerial vehicles (UAVs). A dense point cloud was retrieved and the plane that better fits the river water surface was found by the use of the random sample consensus (RANSAC) method. A reference point of a known altitude within the image was then exploited in order to compute the distance between it and the fitted plane, in order to monitor the altitude of the free surface of the river. This paper further aims to perform a critical analysis of the sensitivity of these photogrammetric techniques for river water level determination, starting from the effects that are highlighted by the state of the art, such as random noise that is related to the image data quality, reflections and process parameters. In this work, the influences of the plane depth and number of iterations have been investigated, showing that in correspondence to the optimal plane depth (0.5 m) the error is not affected by the number of iterations.

Rivers' Water Level Assessment Using UAV Photogrammetry and RANSAC Method and the Analysis of Sensitivity to Uncertainty Sources / Giulietti, Nicola; Allevi, Gloria; Castellini, Paolo; Garinei, Alberto; Martarelli, Milena. - In: SENSORS. - ISSN 1424-8220. - 22:14(2022), p. 5319. [10.3390/s22145319]

Rivers' Water Level Assessment Using UAV Photogrammetry and RANSAC Method and the Analysis of Sensitivity to Uncertainty Sources

Allevi, Gloria;Castellini, Paolo;Martarelli, Milena
2022-01-01

Abstract

Water-level monitoring systems are fundamental for flood warnings, disaster risk assessment and the periodical analysis of the state of reservoirs. Many advantages can be obtained by performing such investigations without the need for field measurements. In this paper, a specific method for the evaluation of the water level was developed using photogrammetry that is derived from images that were recorded by unmanned aerial vehicles (UAVs). A dense point cloud was retrieved and the plane that better fits the river water surface was found by the use of the random sample consensus (RANSAC) method. A reference point of a known altitude within the image was then exploited in order to compute the distance between it and the fitted plane, in order to monitor the altitude of the free surface of the river. This paper further aims to perform a critical analysis of the sensitivity of these photogrammetric techniques for river water level determination, starting from the effects that are highlighted by the state of the art, such as random noise that is related to the image data quality, reflections and process parameters. In this work, the influences of the plane depth and number of iterations have been investigated, showing that in correspondence to the optimal plane depth (0.5 m) the error is not affected by the number of iterations.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/308543
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact