We consider the following nonlinear parabolic equation (F(v))x+(G(v))τ=(D(v))xx+ρ(v),v∈[α,β] where F, G are generic C1-functions in [α,β], D∈C1[α,β]∩C2(α,β) is positive inside (α,β) (possibly vanishing at the extreme points), and finally ρ is a monostable reaction term. We investigate the existence and the properties of travelling wave solutions for such an equation and provide their classification between classical and sharp solutions, together with an estimate of the minimal wave speed

Wavefront solutions for a class of nonlinear highly degenerate parabolic equations / Cantarini, Marco; Marcelli, Cristina; Papalini, Francesca. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 332:(2022), pp. 278-305. [10.1016/j.jde.2022.05.019]

Wavefront solutions for a class of nonlinear highly degenerate parabolic equations

Marcelli Cristina
;
Papalini Francesca
2022-01-01

Abstract

We consider the following nonlinear parabolic equation (F(v))x+(G(v))τ=(D(v))xx+ρ(v),v∈[α,β] where F, G are generic C1-functions in [α,β], D∈C1[α,β]∩C2(α,β) is positive inside (α,β) (possibly vanishing at the extreme points), and finally ρ is a monostable reaction term. We investigate the existence and the properties of travelling wave solutions for such an equation and provide their classification between classical and sharp solutions, together with an estimate of the minimal wave speed
2022
File in questo prodotto:
File Dimensione Formato  
Cantarini_Wavefront-solutions-class-nonlinear_2022.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 432.82 kB
Formato Adobe PDF
432.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Cantarini_Wavefront-solutions-class-nonlinear_Post-print.pdf

Open Access dal 11/06/2024

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Creative commons
Dimensione 339.54 kB
Formato Adobe PDF
339.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/308161
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact