The Agri_q is an electric unmanned ground vehicle specifically designed for precision agriculture applications. Since it is expected to traverse on unstructured terrain, especially uneven terrain, or to climb obstacles or slopes, an eight-wheeled locomotion layout, with each pair of wheels supported by a bogie, has been chosen. The wide contact surface between the vehicle and the ground ensures a convenient weight distribution; furthermore, the bogie acts like a filter with respect to ground irregularities, reducing the transmissibility of the oscillations. Nevertheless, this locomotion layout entails a substantial lateral slithering along curved trajectories, which results in an increase of the needed driving torque. Therefore, reducing the number of ground contact points to compare the torque adsorption in different configurations, namely four, six, or eight wheels, could be of interest. This paper presents a reconfiguration mechanism able to modify the Agri_q locomotion layout by lifting one of the two wheels carried by the bogie and to activate, at the same time, a suspension device. The kinematic synthesis of the mechanism and the dynamic characteristics of the Agri_q suspended front module are presented.

Design of a mechanism with embedded suspension to reconfigure the agri_q locomotion layout / Visconte, C.; Cavallone, P.; Carbonari, L.; Botta, A.; Quaglia, G.. - In: ROBOTICS. - ISSN 2218-6581. - 10:1(2021), pp. 1-14. [10.3390/robotics10010015]

Design of a mechanism with embedded suspension to reconfigure the agri_q locomotion layout

Carbonari L.;
2021-01-01

Abstract

The Agri_q is an electric unmanned ground vehicle specifically designed for precision agriculture applications. Since it is expected to traverse on unstructured terrain, especially uneven terrain, or to climb obstacles or slopes, an eight-wheeled locomotion layout, with each pair of wheels supported by a bogie, has been chosen. The wide contact surface between the vehicle and the ground ensures a convenient weight distribution; furthermore, the bogie acts like a filter with respect to ground irregularities, reducing the transmissibility of the oscillations. Nevertheless, this locomotion layout entails a substantial lateral slithering along curved trajectories, which results in an increase of the needed driving torque. Therefore, reducing the number of ground contact points to compare the torque adsorption in different configurations, namely four, six, or eight wheels, could be of interest. This paper presents a reconfiguration mechanism able to modify the Agri_q locomotion layout by lifting one of the two wheels carried by the bogie and to activate, at the same time, a suspension device. The kinematic synthesis of the mechanism and the dynamic characteristics of the Agri_q suspended front module are presented.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/296815
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact