The current study evaluated the quality of agricultural waste digestate by composting or co-composting with biogas feedstock (maize silage, food processing waste, or poultry litter). Temperature, phytotoxicity, C/N ratio, water extractable trace elements, and 14 enzyme activities were monitored. Temperature dropped earlier in digestate and maize silage co-composting pile, reducing time to maturity by 20 days. Composting and co-composting reduced phytotoxicity and C/N ratio, but increased immobilization of Al, Ba, Fe, Zn, and Mn at least by 40% in all piles. All the enzyme activities, except arylsulfatase and α-glucosidase, increased at the maturity phase and negatively correlated with organic matter content and most of trace elements. Post-digestate composting or co-composting with biogas feedstock is a promising strategy to improve digestate quality for fertilizer use, and selected enzyme activities can be indicators of compost maturity and immobilization of trace elements.
Post-digestate composting benefits and the role of enzyme activity to predict trace element immobilization and compost maturity / Biyensa, Gurmessa; Cocco, S.; Ashworth, J. A.; Foppa Pedretti, E.; Ilari, A.; Cardelli, V.; Fornasier, F.; Ruello, Maria Letizia; Corti, G.. - In: BIORESOURCE TECHNOLOGY. - ISSN 0960-8524. - ELETTRONICO. - 338:(2021). [10.1016/j.biortech.2021.125550]
Post-digestate composting benefits and the role of enzyme activity to predict trace element immobilization and compost maturity
Gurmessa Biyensa
Primo
;Cocco S.;Foppa Pedretti E.;Ilari A.;Cardelli V.;Ruello Maria Letizia;Corti G.Ultimo
2021-01-01
Abstract
The current study evaluated the quality of agricultural waste digestate by composting or co-composting with biogas feedstock (maize silage, food processing waste, or poultry litter). Temperature, phytotoxicity, C/N ratio, water extractable trace elements, and 14 enzyme activities were monitored. Temperature dropped earlier in digestate and maize silage co-composting pile, reducing time to maturity by 20 days. Composting and co-composting reduced phytotoxicity and C/N ratio, but increased immobilization of Al, Ba, Fe, Zn, and Mn at least by 40% in all piles. All the enzyme activities, except arylsulfatase and α-glucosidase, increased at the maturity phase and negatively correlated with organic matter content and most of trace elements. Post-digestate composting or co-composting with biogas feedstock is a promising strategy to improve digestate quality for fertilizer use, and selected enzyme activities can be indicators of compost maturity and immobilization of trace elements.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.