Nowadays, the amount and variety of scenarios that can benefit from techniques for extracting and managing knowledge from raw data have dramatically increased. As a result, the search for models capable of ensuring the representation and management of highly heterogeneous data is a hot topic in the data science literature. In this thesis, we aim to propose a solution to address this issue. In particular, we believe that graphs, and more specifically complex networks, as well as the concepts and approaches associated with them, can represent a solution to the problem mentioned above. In fact, we believe that they can be a unique and unifying model to uniformly represent and handle extremely heterogeneous data. Based on this premise, we show how the same concepts and/or approach has the potential to address different open issues in different contexts. ​

Al giorno d’oggi, i contesti che possono beneficiare di tecniche di estrazione della conoscenza a partire dai dati grezzi sono aumentati drasticamente. Di conseguenza, la definizione di modelli capaci di rappresentare e gestire dati altamente eterogenei è un argomento di ricerca molto dibattuto in letteratura. In questa tesi, proponiamo una soluzione per affrontare tale problema. In particolare, riteniamo che la teoria dei grafi, e più nello specifico le reti complesse, insieme ai suoi concetti ed approcci, possano rappresentare una valida soluzione. Infatti, noi crediamo che le reti complesse possano costituire un modello unico ed unificante per rappresentare e gestire dati altamente eterogenei. Sulla base di questa premessa, mostriamo come gli stessi concetti ed approcci abbiano la potenzialità di affrontare con successo molti problemi aperti in diversi contesti. ​

Graphs behind data: A network-based approach to model different scenarios / Virgili, Luca. - (2022 Mar 04).

Graphs behind data: A network-based approach to model different scenarios

VIRGILI, LUCA
2022-03-04

Abstract

Nowadays, the amount and variety of scenarios that can benefit from techniques for extracting and managing knowledge from raw data have dramatically increased. As a result, the search for models capable of ensuring the representation and management of highly heterogeneous data is a hot topic in the data science literature. In this thesis, we aim to propose a solution to address this issue. In particular, we believe that graphs, and more specifically complex networks, as well as the concepts and approaches associated with them, can represent a solution to the problem mentioned above. In fact, we believe that they can be a unique and unifying model to uniformly represent and handle extremely heterogeneous data. Based on this premise, we show how the same concepts and/or approach has the potential to address different open issues in different contexts. ​
4-mar-2022
Al giorno d’oggi, i contesti che possono beneficiare di tecniche di estrazione della conoscenza a partire dai dati grezzi sono aumentati drasticamente. Di conseguenza, la definizione di modelli capaci di rappresentare e gestire dati altamente eterogenei è un argomento di ricerca molto dibattuto in letteratura. In questa tesi, proponiamo una soluzione per affrontare tale problema. In particolare, riteniamo che la teoria dei grafi, e più nello specifico le reti complesse, insieme ai suoi concetti ed approcci, possano rappresentare una valida soluzione. Infatti, noi crediamo che le reti complesse possano costituire un modello unico ed unificante per rappresentare e gestire dati altamente eterogenei. Sulla base di questa premessa, mostriamo come gli stessi concetti ed approcci abbiano la potenzialità di affrontare con successo molti problemi aperti in diversi contesti. ​
graph theory; complex Networks; network analysis; internet of things
teoria dei grafi; complex networks; network analysis; internet of things
File in questo prodotto:
File Dimensione Formato  
Tesi_Virgili.pdf

accesso aperto

Descrizione: Tesi_Virgili
Tipologia: Tesi di dottorato
Licenza d'uso: Creative commons
Dimensione 22.74 MB
Formato Adobe PDF
22.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/295088
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact