In this paper, we study the multiplicity and concentration of positive solutions for the following (p, q)-Laplacian problem: {-Δpu-Δqu+V(εx)(|u|p-2u+|u|q-2u)=f(u)inRN,u∈W1,p(RN)∩W1,q(RN),u>0inRN,where ε> 0 is a small parameter, 1 < p< q< N, Δru=div(|∇u|r-2∇u), with r∈ { p, q} , is the r-Laplacian operator, V: RN→ R is a continuous function satisfying the global Rabinowitz condition, and f: R→ R is a continuous function with subcritical growth. Using suitable variational arguments and Ljusternik–Schnirelmann category theory, we investigate the relation between the number of positive solutions and the topology of the set where V attains its minimum for small ε.
Multiplicity and concentration results for a (p, q)-Laplacian problem in RN / Ambrosio, V.; Repovs, D.. - In: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK. - ISSN 0044-2275. - 72:1(2021). [10.1007/s00033-020-01466-7]
Multiplicity and concentration results for a (p, q)-Laplacian problem in RN
Ambrosio V.
;
2021-01-01
Abstract
In this paper, we study the multiplicity and concentration of positive solutions for the following (p, q)-Laplacian problem: {-Δpu-Δqu+V(εx)(|u|p-2u+|u|q-2u)=f(u)inRN,u∈W1,p(RN)∩W1,q(RN),u>0inRN,where ε> 0 is a small parameter, 1 < p< q< N, Δru=div(|∇u|r-2∇u), with r∈ { p, q} , is the r-Laplacian operator, V: RN→ R is a continuous function satisfying the global Rabinowitz condition, and f: R→ R is a continuous function with subcritical growth. Using suitable variational arguments and Ljusternik–Schnirelmann category theory, we investigate the relation between the number of positive solutions and the topology of the set where V attains its minimum for small ε.File | Dimensione | Formato | |
---|---|---|---|
AmRe21.pdf
solo utenti autorizzati
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
610.25 kB
Formato
Adobe PDF
|
610.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
RAZ_Ambrosio_Vincenzo_2021.pdf
Open Access dal 19/01/2022
Descrizione: This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00033-020-01466-7
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Licenza specifica dell’editore
Dimensione
573.97 kB
Formato
Adobe PDF
|
573.97 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.