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MULTIPLICITY AND CONCENTRATION RESULTS
FOR A (p,q)-LAPLACIAN PROBLEM IN RV

VINCENZO AMBROSIO AND DUSAN REPOVS

ABSTRACT. In this paper we study the multiplicity and concentration of positive solutions for the
following (p, ¢)-Laplacian problem:

—Apu— Agu+ V(ez) (JulPPu+ |ul*?u) = f(u) inRY,

uw e WHPRM) N WHIRY), uw>0in RY,
where ¢ > 0 is a small parameter, 1 < p < ¢ < N, Ayu = div(|Vu|""2Vu), with r € {p,q},
is the r-Laplacian operator, V : RY —R is a continuous function satisfying the global Rabinowitz
condition, and f : R— R is a continuous function with subcritical growth. Using suitable variational
arguments and Lyusternik-Shnirel’'man category theory, we investigate the relation between the
number of positive solutions and the topology of the set where V' attains its minimum for small e.

1. INTRODUCTION

In this paper we deal with the existence and multiplicity of solutions for the following (p, ¢)-Laplacian
problem:
—Apu— Agu+V(ez) (JufP?u+ |[uf%u) = f(u) inRY, p
uwe WWPRN)NWHIRN), u>0 in RV, (%)
where ¢ > 0 is a small parameter, 1 < p < ¢ < N, Ayu = div(|Vu|""2Vu), with 7 € {p, ¢}, is the
r-Laplacian operator, V : RN — R is a continuous potential and f : R— R is a continuous function
with subcritical growth.
We recall that this class of problems arises from a general reaction-diffusion system

up = div(D(u)Vu) + f(z,u) =€ RN ¢t >0,

where D(u) = |Vu[P~2+|Vu|?~2. As pointed out in [9], this equation appears in several applications
such as biophysics, plasma physics and chemical reaction design. In these applications, u describes
a concentration, div(D(u)Vu) corresponds to the diffusion with a diffusion coefficient D(u), and
the reaction term f(x,u) relates to source and loss processes. Classical (p, ¢)-Laplacian problems in
bounded or unbounded domains have been studied by several authors; see for instance [3,11-16,20]
and references therein.

In order to precisely state our result, we introduce the assumptions on the potential V' and the
nonlinearity f. Along the paper we assume that V : RV — R is a continuous function satisfying the
following condition introduced by Rabinowitz [21]:

0< inf V(z) ="V <liminf V(z) = Vi € (0, o0, (V)
zERN |z|—o00
and the nonlinearity f : R — R fulfills the following hypotheses:
(f1) f€COR,R) and f(t) = 0 for all t < 0;
by 1 P01

tl—o [P~
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2 V. AMBROSIO AND D. REPOVS

L L)

lt[—oo [t[71

(f3) there exists r € (¢, q*), with ¢* = NN—fq, such that =0;

(f1) there exists ¥ € (¢, q*) such that
t
0 <VF(t) = 19/ f(r)dr <tf(t) forallt>0;
0
t
(f5) the map t — Ltfq(_i
Since we deal with the multiplicity of solutions of (P:), we recall that if Y is a given closed subset
of a topological space X, we denote by catx (V) the Lyusternik-Shnirel’'man category of Y in X, that

is the least number of closed and contractible sets in X which cover Y (see [25] for more details).
Let us denote by

M={zeRN:V(z)=Vy} and M;={zeR" :dist(x, M) <5}, for § > 0.

is increasing on (0, 00).

Our main result can be stated as follows:

Theorem 1.1. Assume that conditions (V') and (f1)-(f5) hold. Then for any 6 > 0 there exists e5 >
0 such that, for any € € (0,¢5), problem (P:) has at least cat (M) positive solutions. Moreover, if
ue denotes one of these solutions and x. € RN is a global mazimum point of u., then

lim V(ex.) = Vb,
e—0
and there exist C1,Cy > 0 such that
ug(x) < Cre= =zl for gl x € RV,

The proof of Theorem 1.1 will be obtained by using suitable variational techniques and category
theory. We note that Theorem 1.1 improves Theorem 1.1 in [3], in which the authors assumed
f € C! and that there exist C > 0 and v € (p, ¢*) such that

PO = (g—1)ft)t > Ct"  forall t > 0.

Since we require that f is only continuous, the classical Nehari manifold arguments used in [3] do
not work in our context, and in order to overcome the non-differentiability of the Nehari manifold,
we take advantage of some variants of critical point theorems from [23]. Clearly, with respect to |3],
a more accurate and delicate analysis will be needed to implement our variational machinery. To
obtain multiple solutions, we use a technique introduced by Benci and Cerami in [7], which consists
of making precise comparisons between the category of some sublevel sets of the energy functional Z,
associated with (P.) and the category of the set M. Since we aim to apply Lyusternik-Shnirel’man
theory, we need to prove certain compactness property for the functional Z.. In particular, we will see
that the levels of compactness are strongly related to the behavior of the potential V' at infinity. This
kind of argument has been recently employed by the first author for nonlocal fractional problems;
see for example [5,6]. Finally, we prove the exponential decay of solutions by following some ideas
from [13]. We would like to point out that our arguments are rather flexible and we believe that the
ideas contained here can be applied in other situations to study problems driven by (p, ¢)-Laplacian
operators, ¢-Laplacian operator, or also fractional (p, q)-Laplacian problems, on the entire space.

The paper is organized as follows: in Section 2 we collect some facts about the involved Sobolev
spaces and some useful lemmas. In Section 3 we provide some technical results which will be crucial
to prove our main theorem. In Section 4 we deal with the autonomous problems associated to (F:).
In Section 5 we obtain an existence result for (F:) for sufficiently small €. Section 6 is devoted to
the multiplicity result for (P:), and Section 7 to the concentration phenomenon.
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2. PRELIMINARIES

In this section we recall some facts about the Sobolev spaces and we prove some technical lemmas
which we will use later.

Let p € [1,00] and A € RY. We denote by |u|r(4) the LP(A)-norm of a function v : RY — R
belonging to LP(A). When A = RY | we simply write |u|, instead of |ul Loy For p € (1,00) and
N > p, we define D'P(RY) as the closure of C2°(RY) with respect to

Vulp = / Vulde.
RN

Let us denote by WLP(RY) the set of functions u € LP(RY) such that |Vu|, < oo, endowed with
the natural norm
lully , = [Vulp + [ulp.

We begin by recalling the following embedding theorem for Sobolev spaces.

Theorem 2.1. (see [1]) Let N > p. Then there exists a constant S, > 0 such that, for any
u € DVP(RY),

ulpe < Sy HVulb.
Moreover, WHP(RN) is continuously embedded in LY(RYN) for any t € [p,pt] and compactly in
Lt (RN) for any t € [1,p*).

loc

We recall the following Lions compactness lemma.

Lemma 2.1. (see [17]) Let N > p and r € [p,p*). If {u,} is a bounded sequence in W'P(RN) and
if

lim sup / |un|"dx = 0, (2.1)
Br(y)

N300 e RN
where R > 0, then u, — 0 in LYRYN) for all t € (p,p*).
We also have the following useful lemma.
Lemma 2.2. (see [2,18]) Let n, : RN - RE K > 1, with n, € L}RY) x --- x LY(RN) (¢ > 1),
Nn(x) =0 a.e. in RX and A(y) = |y|' "2y, y € RE. Then, if |n.|: < C for all n € N, we have
[ 1A+ 0) = () = Al dz = 0,(1)

for each w € L'(RN) x -+ x LHRYN) fized, and t' = ﬁ is the conjugate exponent of t.

For € > 0, we define the space
X, = {u e WHPRN) n W (RN) / Viex) (Julf + |ul?) dz < oo}
RN

endowed with the norm
[ulle = llullvp + [lullv,g,
where

Hu||§/t = |Vull + /]RN V(ex)|u|de forall t > 1.

Then the following embedding lemma hold.

Lemma 2.3. (see [3]) The space X. is continuously embedded into WP (RN )NWL4(RN). Therefore
X is continuously embedded in L'(RN) for any t € [p,q*] and compactly embedded in L*(Bg), for
all R >0 and any t € [1,¢*).
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Lemma 2.4. (see [3]) If Voo = 00, the embedding X. C L™(RYN) is compact for any p < m < ¢*.
Finally we have the following splitting lemma which will be very useful in this work.

Lemma 2.5. Let {u,} C X; be a sequence such that u, — u in X.. Set v, = u, —u. Then we have
(@) [Voalp + [Voald = (IVunlp + [Vun|d) — (IVulh +[Vull) +on(1),

(i1 /RN V(e ) ([oal? + vnl?) do = /RN V(e ) (funl? + |un|?) dz — /RN Viea) (ful? + |ul?) dz +

on(1)

(i) [ | (F(u) = Fu) + Fw) dz = 0,(1),

() sup [ 1(F(n) — Flun) + F(u)) wldo = on(1).
lwlle<1 /RN

Proof. Tt is clear that (i) and (i7) are consequences of the well-known Brezis-Lieb lemma [8]. The
proofs of (iii) and (iv) are given in [3] for f € C!. Since here we are assuming f € C°, we need to
use different arguments. We start by proving (ii7). Let us note that u, = v, + u and

1 d 1
F(un)—F(vn):/O (ﬁF(vn+tu)dt:/O wf (v + tu) dt.

In view of (f2) and (f3), for any § > 0 there exists ¢s > 0 such that

1F(D)] < po|t|P~L +¢s)t|T 71 for all t € R, (2.2)

|F(t)| < 6[t]P + c5[t|7  for all t € R. (2.3)

Using (2.2) with 6 =1 and (|a|+[b])" < C(r)(Ja|” +|b]") for any a,b € R and r > 1, we can see that
|F(un) = F(vn)| < CloalP~ul + Cluf” + Cloa| T~ ul + Clul?". (2.4)

Fix n > 0. Applying the Young inequality ab < na” + C(n)b" for all a,b > 0, with 7, € (1, 00)
such that % + % = 1, to the first and the third term on the right hand side of (2.4), we deduce that
| (un) = F(va)| < 0(loal? + [va] ) + CyJul? + |u|”)

which together with (2.3) with § = n implies that
|F(un) = F(vn) = F(u)| < 0(|val” + oa|") + Cp(|ul? + [ulT).
Let
Gpon () = max {|F (un) = F(vn) = F(u)| = n([oa]” +va]"),0} .

Then G, — 0 a.e. in RN as n — oo (recall that v, —0 a.e. in RN as n — o), and 0 < Gyn <
Cy (JulP + lu|9") € LY(RN). As a consequence of the dominated convergence theorem we get

Gpn(x)dr —0 asn — oo.
RN

On the other hand, by the definition of G, ,, it follows that
|[F(vn) = F(un) + F ()] < 0(|vnl” + [02|") + Gyn
which together with the boundedness of (uy,) in LP(RY) N L9 (RN) yields

limsup/ |F(vp) — F(uy) + F(u)|dz < Cn.
RN

n—oo
By the arbitrariness of n > 0 we can deduce that (¢i7) holds. Finally, we prove (iv). For any fixed
n > 0, by (f2) we can choose 19 = r9(n) € (0, 1) such that

[FO)] <mltP~t for [t] < 2ro. (2.5)
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On the other hand, by (f3) we can pick 1 = r1(n) > 2 such that
O <t for [ > — 1. (2.6)
By the continuity of f, there exists 6 = §(n) € (0, ) satisfying
f(tr) = f(t2)] <7871 for [ty —ta] <6, [tal, [ta] < 7+ 1. (2.7)
Moreover, by (f3) there exists a positive constant ¢ = ¢(n) such that
1FO)] < et 4+ n)t|7 "t forall t € R. (2.8)

In what follows, we shall estimate the following term:
Lo =) = Fua) = )] da
RN\BR(0)

Using (2.8) and u € LP(RN) N LY (RY), we can find R = R(n) > 0 such that

*_

g -1
q* P
[ Waldr<e ( J d:r> wlyr +c ( Lo dw) wly
RN\Br(0) RN\ Br(0) RN\Bg(0)

< enflwllig +enlfwllrp < enflwlle.

Set A, = {z € RN\ Br(0) : |uy(x)| < ro}. Invoking (2.5) and applying the Hélder inequality we
get

/ |f (un) = fun = w)llwldz < n(lunlh™" + Jun = ulp™)|wlp < enflwlle.  (2.9)
Ann{Jul<5}
Let B, = {x € RN\ Bg(0) : |uy(z)| > r1}. Then (2.6) and the Hélder inequality yield
/ [f () = f (n = w)lJw] dx < n(|un|d " + Jun = ulf ™ )wlg < enfe. (2.10)
BnN{|u|<é}

Finally, define C,, = {z € RY \ Bg(0) : ¢ < |un(x)| < r1}. Since u, € WIP(RY) it follows that
|Cy| < 00. Now (2.7) gives

— p—1
/ [ (un) = fun = w)lJw]dz < r§ " nlwlp|Cul 7 < nlunlplwly < enllw].. (2.11)
Cn{|ul<d}
Putting together (2.9), (2.10) and (2.11), we obtain that

/(]RN\B Opiu<s) |f(upn) — flup —u)|jwlde < enljw|e  for all n € N. (2.12)
R U|l~

Next, we note that (2.8) implies
|f (un) = f (un — )] < 0lun] T+ Jun —ul® )+ () (unl” ™+ Jun —uP7H),

so we can see that

/ 1 um) — F(tn — )] da

(RN\Br(0))N{|u|>6}

K / [ ual =+ — Yol 4+ ) P+t — o]
(RN\Br(0))n{|u|>5}

< enllwll. + / e(n)(tnl?™ + e — P~V uo] .
(RN\Br(0))n{|u|>d}
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Since u € WIP(RY), we get |(RY \ Br(0)) N {|u| > 6}| =0 as R— oco. Then choosing R = R(n)
large enough we can infer

/ () (un P+ Jum — P~ ) ] de
(RN\Br(0))n{|u|>8}

< c(n)(funly=" + lun —ulfs?) [wlg [(RY \ Br(0) N {u =6} 7 <nlwll.,

where we have used the generalized Holder inequality. Therefore
/ [ (n) = f(un — w)ll]do < enllu]l.  forall n €N,
(RN\BRr(0))n{|ul=d}
which combined with (2.12) yields

/ |f(un) — f(u) — f(u, —u)||w|dx < enl|lw||e  for all n € N. (2.13)
RN\BR(0)

Now, recalling that u,, — u in WHP(RY), we may assume that, up to a subsequence, u, — u strongly
converges in LP(Br(0)) and there exists h € LP(Br(0)) such that |u,(z)|,|u(z)|] < |h(x)| for a. e.
x € Bg(0).

It is clear that

[ 1f = )l do < el (2.14)
Br(0)
provided that n is big enough. Let us define D,, = {x € Br(0) : |u,(x) — u(x)| > 1}. Thus

[ 1) = slwlde < [ (et + ) + el ol ) fu do

< enllw]. + 2¢(n) / P ] da

n
p—1

p
< erlull+ 2600) ([ wpae) " i,
Observing that |D,|— 0 as n — oo, we can deduce that
[ 1) = plfol do < ol (2.15)

Since u € WIP(RY), we know that |{|u| > L}| —0 as L — oo, so there exists L = L(n) > 0 such
that for all n

/ [ lun) — ()] do
(Br(O\Dn)N{|u|>L}
< / [l ="+ Jul Yol + () (" + P o] o
(Br(0)\Dn)N{|u|>L}
. - *—p
< enllwlle + () (fun 27 + [u) [wlg [(Br(0)\ Do) A {Ju| > L}
< enllwl.. (2.16)

On the other hand, by the dominated convergence theorem we can infer

/ |f(un) — f(w)|Pdz—0 asn—oo.
(Br(0O)\Dn)N{|u|<L}
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Consequently,

/ | um) — F(u)]w] da < enllu]:
(Br(O)\Dn)N{|u|<L}

for n large enough. Putting together (2.15), (2.16) and (2.17), we have
[ 1) = sl de < el
Br(0)
This and (2.14) yield
[ 1) = £ = fn = wlfu]do < enlul.
Br(0)
Taking into account (2.13) and (2.18), we can conclude that for n large enough

/RN [f (un) = f(u) = f(un — w)l|w| de < en|wlle.

This completes the proof of lemma.

3. FUNCTIONAL SETTING

In this section we consider the following problem

—Apu— Aqu+ V(ex) (JufP~?u+ \u\p*Quj)\,: f(u) in RV,
u € WIP(RN) N WhHI(RN),  u > 0in RV,

In order to study (FP.), we look for critical points of the functional Z, : X, — R defined as

1 1 1 1
Iu:Vup+qu+/ Viex <up+uq>dx—/ F(u)dz.
=(u) pl 14 ql ¥ o (ex) pl | ql | A (u)

N

It is easy to see that Z. € C'(X,,R) and its differential is given by

(Tl (u), p) = / |Vu|P~2Vu - Vo dx +/ \Vu|!™2Vu - Vo dx
RN RN

+ / V(ez)(|ulP%u + |u|?%u) g dx — / f(u)pdx
RN RN
for any u, ¢ € X.. Now, let us introduce the Nehari manifold associated to Z, that is
Nz = {u e X\ {0} : (ZL(u),u) =0},

and define
Ce = ule%\f/s Z:(u).

Let us note that Z. possesses a mountain pass geometry [4].

Lemma 3.1. The functional Z. satisfies the following conditions:
(1) there exist o, p > 0 such that Z.(u) > a with ||ull: = p;
(13) there exists e € X with ||e||: > p such that Z.(e) < 0.

Proof. (i) Using (f2) and (f3), for any given £ > 0 there exists C¢ > 0 such that
)] < P+ Celt ™! for any ¢ € R,

c
PO < S+ i for any £ R.
P T

(2.17)

(2.18)
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Hence, taking £ € (0, Vp), we have
1 1 ¢ Ce
Ie(u) 2 Z;HUH’{/,p + g||uH‘€/,q - E!u\ﬁ =l
1 T
> Cllully,, + QHUH% — CellullZ.
Choosing [lul = p € (0,1) and using 1 < p < g, we have |[ullv,, < 1 and therefore |[ul7,, > [ull{,
which combined with a® + b* > Cy(a + b)! for any a,b > 0 and ¢ > 1, yields
Z(u) = Cllull — C¢llullz.

Since 7 > ¢ we can find a > 0 such that Z.(u) > o > 0 for ||u||. = p.
(7i) By (fs4) we can infer

F(t) > Ci|t|” — Cy  for any t > 0,
for some C1,Co > 0. Taking v € C°(RY) such that v > 0, v # 0, we have
tP A 9 9
Z.(tv) < —||v|lP + —||lv|| — ¢ Cl/ vVdz + C| suppv| — —o0 as t — oc.
p q s

upp v
g

Now, in view of Lemma 3.1, we can use a version of mountain pass theorem without the Palais-
Smale condition [25] to deduce the existence of a (PS)-sequence {u,} at level ¢., namely

T (up)—c.  and  Z.(u,)—0,
where ¢, is the mountain pass level of Z. defined as

= inf 7. t
inf, max =(v(1)),

/
CE

and I' = {y € C([0,1], X.) : 7(0) =0, Z(v(1)) < 0}.

Lemma 3.2. The following holds

=c.= inf maxZ(tu).
weXA\{0} 10
Proof. For each v € X, \ {0} and ¢ > 0, let us introduce the function h(t) = Z.(tu). Following the
same arguments as in the proof of Lemma 3.1 we deduce that h(0) = 0, h(t) < 0 for ¢ sufficiently
large and h(t) > 0 for ¢ sufficiently small. Hence, max;>q h(t) is achieved at ¢t = ¢, > 0 satisfying
B (ty) =0 and t,u € N-.
Note that, if u € N then u™ # 0. Indeed, from (f1), we can deduce that

p q _ _ +\,,+
Jully + iy = [ Sude= [ty da.

Now, if u* = 0, then ||ul|{,,+[[ull{,, = 0, that is u = 0, and this is a contradiction in view of u € N.
Next, we prove that t, is the unique critical point of h. Assume by contradiction that there exist
t1 and to such that tiu, tau € N, that is

_ _ t
ENuf? + [Vull + £ q/ V(a:c)|u]pd:c+/ V(em)u|qd:c:/ ) g gy
RN RN {us0y (t1w)?

and

_ _ t
thy Vulb + [Vull + th q/ V(E:v)|upd:v—|—/ V(ex)|u|?dx = / Lu_)luq dx.
RN RN {us0y (t2u)?



MULTIPLICITY AND CONCENTRATION RESULTS FOR A (p,q)-LAPLACIAN PROBLEM 9

Subtracting term by term in the above equalities we get

p—q _ ,p—q p—q _ 4p—q _ IFAGED) _ f(tou) |
(ty ty ) Vulp + (8] ty )/]RN V(ex)|ulf du = /{u>0} | (tw)e T (tu)a T uldz.

Now, if t; < tg, from (f5) and recalling that p < ¢, we can infer

_ — _ _ [ f(t t 1

0< (17— 2N Vulp + (27— 120 [ V(ea)ul dz = / ICORENE (DN NS
RN >0y L(t1w)=t (tau)r1 |

which gives a contradiction. Now we can argue as in [25] to complete the proof. g

Next, we prove the following useful result.

Lemma 3.3. Let {u,} be a Palais-Smale sequence of I. at level c. Then
(i) {un} is bounded in X..
(7) u, =0 in X; and we may assume that u, > 0 for any n € N.

Proof. (i) From (f4) we have

CL+ [[tnlle) > Te(ttn) — = (T (1), 1)

U
(Y gt (D e _
= (2= 5) bty (3= 5 ) by + 5 [ Gt = 0F ()

1 1 1 1
p q
= <p - 19> [unlly, + (q - 19> lunlly,,

1 1
> (2= 5) Qo + ).

Now, assume by contradiction that ||u,|| — co. We shall distinguish among the following cases:
Case 1. ||up|lvp — 0o and |[up ||y, — oo.

Since p < g, we have, for n sufficiently large, that ||un||§1;1p > 1, that is Hun||€/q > HunHI"/q, and thus

1 1 p P
O+ lunll) > (5= 5 ) (Honlly + lual)

> C1 ([[unllvp + llunllvg)” = Cullunll2,

which gives a contradiction.
Case 2. ||up|lvp — 00 and |lup|lv,4 is bounded.
We can see that

9

1 1 1 1
oyt L) s (11,
Hu””‘/,p Hunuv,p Hu””‘/,p ¢ v

and letting n — oo, we get 0 > (% — %) > 0, which yields a contradiction.

1 1
C (14 unllva + lhunlva) > (q - ) hunl?,

implies

|unllv,p is bounded and |[up v, — oo.
Case 3. We can proceed similarly as in the case (2).
Hence, {u,} is bounded in X, and we may assume that u,, — v in X and u,, — v a.e. in RY.
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(i7) Since (Z.(up),u, ) = on(1), where u;; = min{u,, 0}, and f(¢) = 0 for ¢ < 0, we have that

/ |V, |P~2Vuy, - Vu,, dz + / |V, | T2V, - Vu, dx
RN RN

+/ V(Sx)(!un|p72un + |un|q72un) u,, dx = op(1),
RN

from which it follows
[ 1V, + llun (1§, = on(1),

that is u, —0 in X.. Moreover, {u;/} is bounded in X.. Now, we prove that Z.(u;") — ¢ and
TL(uf) = on(1). Clearly, ||unllve = |lu) |lvi + on(1) for t € {p,q}. On the other hand, by (3.2), the
mean value theorem, and since u, = u;” + u,, we have

/ F(uy)dx — F(ul)dz
RN RN

<c / (ltnl?™ + [anl™ iz | de
RN
< Cluzlp + Cluzly < Clluzllvp + Clluz via < Clluzlle = oa(1).

This shows that Z.(u;") — ¢. Next, we claim that Z.(u)}) = 0,(1). Fix ¢ € X, such that ||| < 1.
Then we have

[(Zi(un), ) = (Zi(u), )]

/ ([Vun P2V, — |[Vu! |P2Vu |V dx +/ [[Vn |72 Vu, — |V |92V Ve do
RN RN

[ VEDal P+ unl1) = (P2 + 720 d
R

= [ ) = s e s
RN
Now, recalling that for all £ > 0 there exists C¢ > 0 such that
lla+b]"2(a+b) — |a]"%a| < &la|"™t + Celb"™!  for all a,b € RY and ¢ > 1,

we see that for ¢ € {p, ¢} the following holds

‘/ [V, |t 2V, — |[Vu! |2V |V de
RN

< VUVl + Ce | Vuy, | Vel

< EC+ Cffluy |15

Consequently,

limsup’/ [[Vun| "2V, — |Vu, |72V | Ve de| < £C
RN

n— 0o

and by the arbitrariness of £ > 0 we get

lim [[Vun|"*Vu, — |Vl | 2Vu | Vo de = 0.

n— oo RN

A similar argument shows that

lim V(e ) [(JunlPun + Jun| "™ un) = (Jug P20 + [urd[97%0))] 9 dz = 0.
n— oo RN



MULTIPLICITY AND CONCENTRATION RESULTS FOR A (p,q)-LAPLACIAN PROBLEM 11

Observing that

[ ) = 1o
RN

= ’/ fuy )pdx
]RN
§0/<mm*+wm“5ﬂm
RN

< Cllug B elp + lug [ Heelr)

< Cllug 27+ ug [I£71) = on(1),
we can deduce that [(Z(un),¢) — (ZL(u}), )| = on(1). Since (Z.(uy), p) = on(1), we conclude that
Tl (uyy) = on(1). O
Since f is only continuous, the next results are very important because they allow us to overcome

the non-differentiability of N.. We begin by proving some properties of the functional Z..

Lemma 3.4. Under assumptions (V) and (f1)-(fs), for any € > 0 we have:
(1) Z. maps bounded sets of X, into bounded sets of X..
(1) I. is weakly sequentially continuous in X..
(171) Ze(tpupn) — —00 as t, — 0o, where uy, € K and K C X, \ {0} is a compact subset.

Proof. (i) Let {uy} be a bounded sequence in X. and v € X.. Then from assumptions (f2) and (f3)
we can deduce that

(Ze(un),v) < Ctllunl B [vlle + Collun | o]l + CsllunllZ™H 0]l < C.
(ii) Let up, — u in X.. By Lemma 2.3, we have that u,, — w in L (RY) for all t € [1,¢}) and

U, — u a.e. in RY. Then, for all v € C(RY), it follows from (3.1) and the dominated convergence
theorem that

(Zi(un), v) = (T(u), v). (3-3)

Since C2°(RY) is dense in X., we can take {v;} C C>°(R"M) such that |jv; —v|l: — 0 as j — oo.
Note that (3.1) and Lemma 2.3 yield

(ZL(un), v) = (ZL(w),v)| < [(ZL(un) — ZL(u), vj)| + KZ(un) — Z2(u),v — v))]
< (Zi(un) — ZZ(u), v;)| + C/ (JunlP " + [l ™+ Jun "™+ a0 — v da
RN
< (Zi(un) = Z2(w), v5)| + Cllv; — vl
For any ¢ > 0, fix jo € N such that ||v;, —v|. < % By (3.3) there is ng € N such that
HZL(un) — I (u),vj,)] < g for all n > nyg.

Thus
{ZL(up),v) — (ZL(u),v)| < ¢ foralln > ng
and this shows that Z. is weakly sequentially continuous in X..
(7i1) Without loss of generality, we may assume that ||u|l. < 1 for each v € K. For u, € K, after

passing to a subsequence, we obtain that u, — u € S.. Then, using (f4) and Fatou’s lemma, we can
see that

tp q
I (thun) = ;nHuan + ;nHun”g - / F(thun) dz

RN
p 4 F(t
Stg <|1;n”s+||2;n”€_/ (’;de>_>—oo as 1 — 00.
n p n q RN tn
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O

Lemma 3.5. Under the assumptions of Lemma 3.4, for € > 0 we have:
(i) for all u € S, there exists a unique t, > 0 such that t,u € N.. Moreover, m.(u) = tyu is the
unique mazimum of I, on X, where S; = {u € X. : ||ullc = 1}.
(i) The set N is bounded away from 0. Furthermore, N is closed in X..
(7i1) There exists a > 0 such that t, > « for each u € S; and, for each compact subset W C S,
there exists Cyy > 0 such that t, < Cy for allu e W.
iv) For each uw € N, mZ'(u) = %~ € N.. In particular, N is a reqular manifold diffeomorphic
e |

E

to the sphere in X..
(v) ¢ =infpa. Ze > p > 0 and Z. is bounded below on N, where p is independent of €.

Proof. (i) The proof follows the same lines as the proof of Lemma 3.2.
(1) Using (3.1) and Lemma 2.3, for any u € N. we have

§
lally + iy = [ Fwude < - lully, + Celul
Taking & > 0 sufficiently small we can deduce that

Cullully,, + llullig < Cllullz.

Now, if [lulle > 1, we are done. If |lul. <1, then [lull}, > |lull{,, so we get

Cllullz = Cillully,, + llulli,y = Cullully, + luly,, = Callull?,

which implies that ||ul|c > & for some xk > 0.
Next, we prove that N is closed in X.. Let {u,} C N: be a sequence such that u,, — u in X.. From
Lemma 3.4 we infer that Z(u,) is bounded, so
(TL(un), un) — (ZL(u), w) = (Zo(un) — Z2(w), w) + (Zo(un), un — u) = 0,
that is (Z.(u), u) = 0, which combined with ||ul|c > & implies that
Julle = lim [lupc > & >0,
n—oo
hence u € M.
(#41) For each u € S, there exists t, > 0 such that t,u € N.. Then, using |ul|: > &, we also have
ty = ||tyulle > K. It remains we prove that ¢, < Cy for all u € W C S.. We argue by contradiction:
we suppose that there exists a sequence {u,} C W C S; such that ¢,, — co. Since W is compact,

we can find w € W such that u, — v in X, and u,, — u a.e. in RV,
Now, using (f1) we have

To(u) = To(u) — j}@;(u), )

_ (; _ i) Vul? + <; - i) /RN V(e 2)ulPde /RN (F(u) - 2f(u)u) da
= (5= i, = [ (P - s) dozo

and this is in contrast with Lemma 3.4-(ii7) by which Z.(t,, un) — —00 as n — oco.
(iv) Let us define the maps . : Xc \ {0} — Nz and m. : S — N: by setting

me(u) =ty,u  and  me = 1Mels.. (3.4)
In view of (i)-(¢9¢) and Proposition 3.1 in [23] we can deduce that m,. is a homeomorphism between

Se and N and the inverse of m. is given by m2!(u) = - Therefore N is a regular manifold

diffeomorphic to S..



MULTIPLICITY AND CONCENTRATION RESULTS FOR A (p7 q)—LAPLACIAN PROBLEM 13
(v) For e > 0,t >0 and u € X. \ {0}, we can see that (3.2) yields
I@>>ﬁvw+ﬁww+/"V@>Cﬁw+ﬂuﬂd L[ volulrde— e [l
u) = — u _— u T — U — U xr — — 0 u T — u X
: p P q b Jan p q Vo Jrw & Jew

> P Y g+ E g, - cet
- p ‘/b P q ,q €

so we can find p > 0 such that Z_(tu) > p > 0 for ¢ > 0 small enough. On the other hand, by using
(1)-(i1i), we get (see |23]) that

=BT = i e T = el gy 20 (3
which implies ¢. > p and Z:|n. > p. O

Now we introduce the following functionals ¥, : X; \ {0} — R and ¥, : S; — R defined by
U, =T.(m.(u)) and .=,
where m.(u) = t,u is given in (3.4). As in [23|, we have the following result:

Lemma 3.6. Under the assumptions of Lemma 3.4, we have that for € > 0:
(i) V. € CL(S,,R), and

(PL(w), v) = [Ime(w)[|e (Z¢(me(w)),v)  for v € Tw(Se).

(73) {wn} is a Palais-Smale sequence for V. if and only if {m.(wy)} is a Palais-Smale sequence for
T.. If {u,} C N is a bounded Palais-Smale sequence for I., then {mZ-(u,)} is a Palais-Smale
sequence for V..

(1i1) u € S¢ s a critical point of V. if and only if m.(u) is a critical point of .. Moreover, the
corresponding critical values coincide and

inf¥, =inf7Z, = c..
5. 5 A € 5

4. THE AUTONOMOUS PROBLEM

In this section we deal with the autonomous problem associated with (P.), that is

A Agut (R o) = f) R
we WHPRN) N WHRY), u>0in RV, 4> 0.

The functional associated with (AP,) is given by

(AP,)
LV q Lo Ly
Ju(u):?Vu\p—i-?Vu]q—Fu Elu\p—i-?u]q - RNF(u)dx

which is well-defined on the space Y,, = WHP(RY) N Wh4(RY) endowed with the norm

wp + H“qua

ullp = flu
where
||u||f¢,t = |Vuli + plult  forall ¢ > 1.
It is easy to check that J, € C!(Y,,R) and its differential is given by

utaoh = |

RN

—i—u[/ |u]p2ug0dm+/ |u]q2ug0da:} —/ f(u)pdx
RN RN RN

|Vu|P2Vu - Vo d + / |Vu|!™2Vu - Vo da
RN
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for any u,p € Y,,. Let us define the Nehari manifold associated with 7,
My = {u e Y, \ {0} : (J;(u),u) = 0}.
We note that (fs) yields

To() = Ty(w) — iw,:(u), )

= (5= )l = [ (P =2 pu) as

1 1
> ( - > [ullf,, for all u€ M. (4.1)
p q ’

Arguing as in the previous section and using (4.1), it is easy to prove the following lemma.

Lemma 4.1. Under the assumptions of Lemma 3.4, for u > 0 we have:
i) for all u € ere exists a unique t, > 0 such that t,u € . Moreover, m,(u) = tyu is
(i) for all u € S,,, th st jque t, > 0 such that t M,. M s mu(u) = tyu i
the unique mazimum of J, on'Y,, where S, = {u € Y, : |lul|, = 1}.
(17) The set M,, is bounded away from 0. Furthermore, M, is closed in Y.
119) There exists o > 0 such that t, > « for each u € S,, and, for each compact subset W C S,
1 I
there exists Cyy > 0 such that t, < Cy for all u € W.
w) My s a reqular manifold diffeomorphic to the sphere in Y ,.
Iz I
(v) d, = infMM Ju >0 and J, is bounded below on M, by some positive constant.
(vi) T, is coercive on M,,.

Now we define the following functionals ,, : Y,, \ {0} — R and ¥, : S, — R by setting
\illt = Ju(mu(u)) and ¥, = @M‘Su-
Then we obtain the following result:

Lemma 4.2. Under the assumptions of Lemma 3.4, we have that for yu > 0:
(i) ¥, € CYSy,R), and

(T, (w), v) = [[my(w) | (T (mpu(w)), v)  for v € Tw(Sy).

(7) {wn} is a Palais-Smale sequence for ¥, if and only if {mu(w,)} is a Palais-Smale sequence
Jor Ty If {un} C My is a bounded Palais-Smale sequence for J,, then {my;'(un)} is a
Palais-Smale sequence for V.

(i13) uw € S, is a critical point of W, if and only if m,(u) is a critical point of J,. Moreover, the
corresponding critical values coincide and

inf ¥, = inf 7, = d,,.

1é1# " }\lelu T = dy
Remark 4.1. Asin (3.5), invoking (i)-(4it) of Lemma 4.1, we can see that d,, admits the following
manimaz characterization

dp= Bt JulW) = Il max Ju(tu) = inf max Ju(tu). (4.2)

Lemma 4.3. Let {u,} C M, be a minimizing sequence for J,. Then {u,} is bounded in Y, and
there exist a sequence {y,} C RY and constants R, 3 > 0 such that

n—o0

liminf/ |up|%dx > 5 > 0.
Br(yn)
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Proof. Arguing as in the proof of Lemma 3.3, we can see that {u,} is bounded in Y,. Now, in order
to prove the other assertion of this lemma, we argue by contradiction. Assume that for any R > 0
it holds

lim sup / | |?dz = 0.
"0 yeRN JBr(y)
Since {uy,} is bounded in Y, it follows by Lemma 2.1 that
u, — 0 in LY(RY)  for any t € (¢, q"). (4.3)
Fix £ € (0, ). Then, taking into account that {u,} C M, and (3.1), we have
0= <~7;i(“n)v Up,)

> !Vunlﬁ + !Vun!Z +u [|un|£ + |Un|g] - €|un|§ — Celun|y
= Cillunlly, + Collun

5. — Cslunly,
and in view of (4.3), we have that [ju,|, — 0. O

Next, we prove the following useful compactness result for the autonomous problem. For complete-
ness, we recall that a critical point u # 0 of J, satisfying J,,(u) = infry, J,, = d,, is called a ground
state solution to (AP,); see chapter 4 in [25] for more details.

Lemma 4.4. The problem (AP,) has a positive ground state solution.

Proof. By virtue of (v) of Lemma 4.1, we know that d,, > 0 for each > 0. Moreover, if u € M,
satisfies 7, (u) = dy, then m'(u) is a minimizer of ¥, and it is a critical point of ¥,. In view of
Lemma 4.2, we can see that u is a critical point of 7,. Now we show that there exists a minimizer
of Julm,- By Ekeland’s variational principle [25] there exists a sequence {v,} C S, such that
U, (vn) = dy, and W) (vp) — 0 as n — oo. Let up, = my(vn) € M,,. Then, thanks to Lemma 4.2,
Ju(un) = dy, and J)(un) — 0 as n — oo. Therefore, arguing as in the proof of Lemma 3.3, {u,} is
bounded in Y, which is a reflexive space, so we may assume that u,, — v in Y, for some u € Y,.

It is clear that J(u) = 0. Indeed, for all ¢ € C>(RM),
/ |V, "2V, - Vo dr — / |Vul!"2Vu - Védx, forte {p q},
RN RN
[l P ungde > [ ultPuods,for t € {pa),
RN RN

flun)pdz — / )z,
RN RN

and using the fact that (7 (un), ¢) = 0,(1), we can deduce that (7, (u), ¢) = 0 for all ¢ € C®(RN).
By the density of ¢ € C°(RY) in Y, we obtain that u is a critical point of 7,.

Now, if u # 0, then u is a nontrivial solution to (AP,). Assume that u = 0. Then |u,||, /# 0 in
Y,. Hence, arguing as in the proof of Lemma 4.3 we can find a sequence {y,} C RY and constants
R, 3 > 0 such that

n— 00

lim inf/ |up|?dz > 5 > 0. (4.4)
BR(yn)

Now, let us define

f}n(x) = un(x + yn)

Due to the invariance by translations of RV, it is clear that ||yt = |unllut, with t € {p,q},

so {U} is bounded in Y, and there exists ¢ such that @, — @ in Y,, 9, — @ in L7 (RY) for any
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m € [1,¢%) and 9 # 0 in view of (4.4). Moreover, J,(0n) = Jp.(un) and J,(9,) = 0, (1), and arguing
as before it is easy to check that J},(¢) = 0.

Now, say u be the solution obtained before, and we prove that w is a ground state solution. It is
clear that d, < J,(u). On the other hand, by Fatou’s lemma we can see that

Tw) = () = ATh0),0) < limin | Ty ) = (T ), )| = s

which implies that d,, = J,(u).
Finally, we prove that the ground state obtained earlier is positive. Indeed, taking u~ = min{u, 0}
as test function in (AP,), and applying (f1) and invoking the following inequality

-y 2@ -y) @ —y) > e —y [P V>,
we can see that

a1y < [ Va2V dady + [ gl P da
RN RN

+/ |Vu|?2Vu - Vu~ dmdy—l—/ || ?uu” da
RN RN
= f(u)u™ dz =0,

RN

which implies that v~ = 0, that is 4 > 0 in RY. By the regularity results in [13], we have that

u € L®°RN) N C’llo’?(RN) and u(x) —0 as |z| — oo (in the exponential way). Applying the Harnack

inequality in [24], we can see that v > 0 in RY. This completes the proof of the lemma. O
5. A FIRST EXISTENCE RESULT FOR (F:)

In this section we focus on the existence of a solution to (P:) provided that e is sufficiently small.
Let us start with the following useful lemma.

Lemma 5.1. Let {u,} C N be a sequence such that Z.(u,) — ¢ and u, — 0 in X.. Then one of
the following alternatives occurs:

(@) up, — 0 in X,

(b) there are a sequence {y,} C RN and constants R, 3 > 0 such that

liminf/ |up|?dz > 5 > 0.
BR(yn)

n—0o0

Proof. Assume that (b) does not hold. Then, for any R > 0, the following holds

lim sup / |up|?dz = 0.
"0 yeRN JBr(y)
Since {uy} is bounded in X,, it follows by Lemma 2.1 that
u, — 0 in LY(RY)  for any t € (¢, q"). (5.1)
Now, we can argue as in the proof of Lemma 4.3 and deduce that ||u,||: — 0 as n — co. O
In order to get a compactness result for Z., we need to prove the following auxiliary lemma.

Lemma 5.2. Assume that Vo < 0o and let {v,} C N be a sequence such that Z.(v,) — d with
v, — 0 in Xo. If vy, A 0 in X, then d > dy,, where dy__ is the infimum of Jy., over My,.
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Proof. Let {t,} C (0,00) be such that {t,v,} C My, . Our aim is to show that limsup,, , . t, < 1.
Assume by contradiction that there exist § > 0 and a subsequence, denoted again by {t¢,}, such that

t, >1+4+3d forany neN. (5.2)

Since {v,} C X is a bounded (PS) sequence for Z., we have that (Z(vy,), vn) = on(1), or equivalently

V0al2 + Va7 +/ V(e 2)|vn P +/ V(e 2)|on|tdz — / Fon)ondz = on(1).  (5.3)
RN RN RN
Since t,v, € My, , we also have that

f(tnvn)

tg—q|wn|g;+|wn|g+tg-qvoo/ |Un\de+voo/ |un\qu—/
RN RN RN

Putting together (5.3) and (5.4), we get
/ < f(taon) - f(vn) >vgd:c g/ (Voo — V(e 2))|vp|?dz. (5.5)
RN ( RN

tyvn)a=1 ()01

Now, using assumption (V') we can see that, given ¢ > 0, there exists R = R({) > 0 such that
V(ex) > Vo — ¢ for any |z| > R. (5.6)

From this, taking into account that v, —0 in L9(Bpg) and the boundedness of {v,} in X., we can
infer

/ (Voo — V(e 2)|vn|%dz / (Voo — V(2 2))|on|1da +/ (Vo — V(e 2))vn|7dz
RN Br(0) RN\Br(0)
<V [ funlrdo o+ v
B(0) RN\ B (0)
< on(1) 4+ CC. (5.7)

Combining (5.5) and (5.7), we have
f(tnvn) _ f(vn) vl de < o
/RN (( ) 94z < on(1) + CC. (5.9)

thvp)dt (vp)e7 !

Since v, /4 0 in X., we can apply Lemma 5.1 to deduce the existence of a sequence {y, } C RN and
two positive numbers R, 8 such that

/ lon|?dz > B> 0. (5.9)
Bal)

Let us consider v, = vy(z + yn). Then we may assume that, up to a subsequence, 0,, — v in X;.
By (5.9) there exists 2 C RY with positive measure and such that o > 0 in Q. From (5.2), (f4) and
(5.8), we can infer that

FA+8)8)  f(Bn) o
- dx < op(1 '

b /Q <((1 F0)0,)a L ()1 ) = (1) +¢C
Taking the limit as n — oo and applying Fatou’s lemma, we obtain

HO400) S0 Y s <0 tor an
o< [, (s ~ ) s s€0 v co

which is a contradiction.
Now we consider the following cases:
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CASE 1: Assume that limsup,,_,., t, = 1. Thus there exists {t,,} such that ¢, — 1. Taking into
account that Z.(v,) — ¢, we have

c+on(1) = Z(vy)
- Ia(vn) - jVoo (tnvn) + jVoo (tnvn)
> IE(UH) - Jv.. (tnvn) +dy,, . (5.10)
Now, let us point out that
I&(Un) - jVoo (tnvn)
_(1_#71) p (1—t3) g, 1 p p
= T|an|p + |V |3 + , /RN (V(ex) = tPVy) |vp|Pdx (5.11)
1
+ / (V(ex) —tlVy) |vp|%dx +/ (F(tpon) — F(vy)) dx.
q JRN RN

Using condition (V), v, — 0 in LP(Br(0)), t, — 1, (5.6), and the fact that
Viex) =tV = (V(ez) = Voo) + (1 = 1) Voo > —C + (1 — 1)V for any |z| > R,

we get

| iea) = v ops

_ / (V(ex) — Vo) |vn[Pda +/ (V(ew) — Vi) |on|Pda
Br(0) RN\Bg(0)
> (Vo tgvoo)/ o Pdz — g/ o Pdz + Vao(1 — t2) / o Pdz
Br(0) RN\BR(0) RN\BR(0)
> on(1) = CC. (5.12)
In a similar fashion we can prove that
/ (V(ex) — tIVy) |vp|?dz > 0,(1) — (C. (5.13)
RN
Since {vy,} is bounded in X., we can conclude that
1—th 1—t
g|an|£ =o,(1) and g]an]g = op(1). (5.14)
Thus, putting together (5.11), (5.12), (5.13) and (5.14), we obtain
Z-(vn) — Jv, (tnvn) > / (F(tpvn) — F(vy)) dz + o0,(1) — ¢C. (5.15)
RN

At this point, we aim to show that

/R (F(tavn) ~ Flwn) do = 0,(1). (5.16)

Applying the mean value theorem and (3.1), we can deduce that

/ |F(tyvn) — F(vn)|dz < Cltn — 1|/ lonPdz + Cltn — 1] / lon [ da.
RN RN RN

Exploiting the boundedness of {v,}, we get the assertion. Gathering (5.10), (5.15) and (5.16), we
can infer that
c+on(l) > o0n(1) = CC +dy,,

and taking the limit as ( —0 we get ¢ > dy__.
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CASE 2: Assume that limsup,,_,. t, = to < 1. Then there is a subsequence, still denoted by
{tn}, such that ¢, — to(< 1) and ¢, < 1 for any n € N. Let us observe that

e+ 0u(1) = Te(wn) = < (TL{on), )

_ <; _ ;) ol + /RN <;f(vn)vn _ F(vn)> da. (5.17)

Recalling that t,v, € My, , and using (f5) and (5.17), we obtain

1
= e (tnvn) - 6<t7\,/oo (tnvn)vtnvn>
(= 2) toalty + [ (G vnltntn — Fitun)) a
=|-—- v - Up )ty — v x
<(:-1 v ! F d
=\, 74 [vnlly,, + . af(vn)vn — F(v,) | da
= c+ on(1).
Taking the limit as n — oo, we get ¢ > dy__. O

At this point we are able to prove the following compactness result.

Proposition 5.1. Let {u,} C N be such that Z.(uy) — ¢, where ¢ < dy,_ if Voo < 00 and ¢ € R if
Voo = 00. Then {un} has a convergent subsequence in X..

Proof. Tt is easy to see that {u,} is bounded in X.. Then, up to a subsequence, we may assume that
Up — u In X,

up — uin L.(RY)  for any m € [1,q%), (5.18)

loc

Up — U a.€. in RN,

By using assumptions (f)-(f3), (5.18) and the fact that C3°(RY) is dense in X, it is easy to check
that Z.(u) = 0.
Now, let v,, = u,, — u. By Lemma 2.5, we have

Ze(vn) = Ze(un) — Ze(u) + on(1)
=c—Z.(u) + 0p(1) = d+ on(1). (5.19)

Now, we prove that Z/(v,) = o,(1). For t € {p,q}, by using Lemma 2.2 with 7, = v, and w = u,
we get

J L 1At = Alv) = A dz = o0,(0), (5.20)

and arguing as in the proof of Lemma 3.3 in [18], we can see that

/N V(e 2)|[om]t20m — [tn]t21n + [ult2u]" dz = on(1). (5.21)
R
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Hence, by using the Holder inequality, for any ¢ € X, such that ||¢||: < 1, we get
(ZE(vn) — Zi(un) + Zi(w), @)

1
7

< ( J L 1At — 4t - A<u>|p’dxdy) 7 el

q

//IR?N [Alun) = Alvn) = A(U)|q/dl‘dy> [¢ls.q

2 |~

p/
V(e 2)l[0nl~20n — [tnfP~un + \u|p—2urp’dx) ( / v<ex>|so\pdx)
N RN

/
/RN Vel enl ™ on = funl s + M“m‘f’“) q/ (/R mew)é
i /RN (£ (0a) = f(wn) + f(w)pld,

and in view of (iv) of Lemma 2.5, (5.20), (5.21), Z.(uy,) = 0 and Z.(u) = 0 we obtain the assertion.
Now, we note that by using (f4) we can see that

B =

T(w) = T.(u) (11<I;(u), u) > 0. (5.22)

Assume Vo < o0o. It follows from (5.19) and (5.22) that
d<c< dvoo

which together Lemma 5.2 gives v,, — 0 in X, that is u,, — v in X..
Let us consider the case Vi, = co. Then, we can use Lemma 2.4 to deduce that v, — 0 in L™(RY)
for all m € [p,¢*). This, combined with assumptions (f2) and (f3), implies that

f(vp)vpdx = o (1). (5.23)
RN

Since (Z.(vy),vn) = o, (1), and applying (5.23) we can infer that
[onllZ = 0n(1),
which yields u,, — v in X,. O

We conclude this section by giving the proof of the existence of a ground state solution to (P:) (that
is a nontrivial critical point u of Z. such that Z.(u) = infyr. Z. = c.) whenever € > 0 is small enough.

Theorem 5.1. Assume that (V) and (f1)-(fs) hold. Then there exists ¢g > 0 such that, for any
e € (0,e90), problem (P.) admits a ground state solution.

Proof. By (v) of Lemma 3.5, we know that ¢. > p > 0 for each ¢ > 0. Moreover, if u. € N:
satisfies Z.(u.) = ce, then m-'(u.) is a minimizer of ¥, and it is a critical point of ¥.. By virtue
of Lemma 3.6, we can see that wu. is a critical point of Z.. It remains to show that there exists a
minimizer of Z.|x.. By Ekeland’s variational principle [25], there exists a sequence {v,} C S; such
that U.(v,) — ¢ and ¥L(v,) — 0 as n — oo. Let u, = me(v,) € Ne. Then, by Lemma 3.6,
we deduce that Z.(u,) — ce, (ZL(un),un) = 0 and Z.(u,) — 0 as n — oo. Therefore, {u,} is a
Palais-Smale sequence for Z. at level c.. It is easy to check that {u,} is bounded in X, and we
denote by wu its weak limit. It is also easy to verify that Z.(u) = 0.
When V, = o0, by using Lemma 2.4, we have Z.(u) = ¢. and Z.(u) = 0.
Now, we deal with the case V < co. In view of Proposition 5.1 it is enough to show that ¢, < dy_,
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for small €. Without loss of generality, we may suppose that
V() =V = inf V(x).
(0) =V = inf V(z)

Let © € R be such that p € (Vp, V). Clearly, dy, < d,, < dy,,. Let us prove that there exists a
function w € Y, with compact support such that

Tu(w) = tfg{ju(tw) and  Jyu(w) < dy,. (5.24)

Let ¢ € C°(RY,[0,1]) be such that ¢ = 1 in B1(0) and % = 2 in RV \ By(0). For any R > 0,
we set Yp(z) = ¥ (5). We consider the function wg(x) = ¢r(z)w”(z), where w" is a ground state
solution to (AP,). By the dominated convergence theorem we can see that

Aimflwr —wHl1p + [lwr — wH1 = 0. (5.25)

Let tg > 0 be such that J,(tgwr) = max;>0 Ju(twg). Then, tpwr € M,. Now there exists 7 > 0
such that J,(trwr) < dy,. . Indeed, if J,(trwr) > dy,, for any R > 0, using tpwr € M, (5.25)
and w" is a ground state, we can deduce that tg — 1 and

dy,, < liminfju(tRwR) = ju(w“) = dﬂ <dy,,
R— 00
which gives a contradiction. Then, taking w = ¢rw#, we can conclude that (5.24) holds.
Now, by (V'), we obtain that for some & > 0
Viex)<p forall x € suppw and ¢ € (0,8). (5.26)
Then, in the light of (5.24) and (5.26), we have for all € € (0,¢)

ngfza(tw) < nlax Tu(tw) = Ju(w) < dy,,.

It follows from (3.5) that ¢, < dy,, for all € € (0,&). O

6. MULTIPLE SOLUTIONS FOR (P)

This section is devoted to the study of the multiplicity of solutions to (P-). We begin by proving
the following result which will be needed to implement the barycenter machinery.

Proposition 6.1. Let £, — 0 and {u,} C N, be such that I, (u,) — dy,. Then there exists
{9} C RN such that the translated sequence

Un () = un(x + 7n)
has a subsequence which converges in Yy,. Moreover, up to a subsequence, {yn} = {en Un} is such

that y, >y € M.

Proof. Since (I (un),un) = 0 and Z., (u,) — dy,, we know that {u,} is bounded in X.. Since
dy, > 0, we can infer that ||u,l|ls, # 0. Therefore, as in the proof of Lemma 5.1, we can find a
sequence {7, } C RY and constants R, 3 > 0 such that

n—oo

liminf/ |up|?dz > . (6.1)
Br(in)

Let us define

Un () = un(x + n).
In view of the boundedness of {uy} and (6.1), we may assume that v, — v in Yy, for some v # 0.
Let {t,} C (0,00) be such that w, = t,v, € My, and we set y, = &y, Jn.
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Thus, by using the change of variables z — x + ¢, V(x) >V, and the invariance by translation, we
can see that

dvy < Jvy(wn) < Ie,, (tnvn) < e, (un) = dy, + on(1).

Hence we can infer Jy;, (w,) — dy;,. This fact and {w,} C My, imply that there exists K > 0 such
that ||wy ||y, < K for all n € N. Moreover, we can prove that the sequence {t,} is bounded in R. In
fact, v, /4 0 in Yy, so there exists o > 0 such that ||vy||y;, > «. Consequently, for all n € N, we
have

[tn]a < ”tnvnHVo = ||wn||Vo <K,

which yields [t,| < % for all n € N. Therefore, up to a subsequence, we may suppose that ¢, — ¢y >
0. Let us show that ¢y > 0. Otherwise, if to = 0, by the boundedness of {v,}, we get w,, = t,v, — 0
in Yy, that is Jy,(wy,) — 0 which is in contrast with the fact dy, > 0. Thus ¢ty > 0 and, up to a
subsequence, we may assume that w, — w = tov # 0 in Yy;.

Therefore

Jv(wp) — dy,  and  w, = w # 0in Yy,.

From Lemma 4.4, we can deduce that w,, = w in Yy, that is v, — v in Yy;.

Now, we show that {y,} has a subsequence satisfying y, — y € M. First, we prove that {y,} is
bounded in RY. Assume by contradiction that {y,} is not bounded, that is there exists a subse-
quence, still denoted by {y,}, such that |y,| — oco.

First, we deal with the case Vo, = co. By using {u,} C N, and by changing the variable, we can
see that

/ V(ena + yn)([onl? + [n|9)dz

RN

< |an|g+ Ian|3+/ Vien® +yn)(lvnl” + |va|?)dz
RN

= f(up)uy doe = f(vn) vy d.
RN RN

By applying Fatou’s lemma and v,, — v in Yy, we deduce that

oo = lim inf/ Vienz + yn)(Jonl? + |vn|?)dx < liminf f(vp)vpde = f)vdr < oo,
RN RN

n—00 n—oo  JpN

which gives a contradiction.
Let us consider the case Voo < oo. Taking into account that w, — w strongly converges in Yy,
condition (V') and using the change of variable z = = + 3, we have

dVo = jVo(w) < jvoo (w)

1 1 1 1
< lim inf [[an\g + = Vw2 +/ Vien® + yn) (|wn]p + \wn|q> dx — / F(wy,) dx]
n—oo | P q RN p q RN

R th th th

= liminf | = [Vu,[) + —[Vu, ] + Vienz) | —|unl? + —|un|? ) dz — F(tpuy,)dz
n—oo | P q RN p q RN

= liminf Z,, (t,u,) <liminfZ. (u,) = dy, (6.2)
n—oo n—oo

which is a contradiction. Thus {y,} is bounded and, up to a subsequence, we may assume that
yn — y. If y & M, then V) < V(y) and we can argue as in (6.2) to get a contradiction. Therefore,
we can conclude that y € M. O
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Let § > 0 be fixed and let ¢» € C*°([0,00), [0,1]) be a nonincreasing function such that ¢ = 1 in

[0,2], 9 =01in [8,00) and [¢'| < C for some C > 0. For any y € M, we define

3

I e §

where w € Xy is a ground state solution to (APy,) which exists by virtue of Lemma 4.4.
Let t. > 0 be the unique positive number such that

T (tYey) = I?Zagi T (tYcy).
Define the map @, : M — N by setting ®.(y) := ¢t Y- ,. Then we can prove that
Lemma 6.1. The functional ®. satisfies the following limit
;i_rg(l)Zs((I)E(y)) = dy, uniformly in y € M. (6.3)

Proof. Assume by contradiction that there exist o9 > 0, {y,} C M and &,, — 0 such that
... (D2, (yn) — dvy| > o. (6.4)

Let us observe that the dominated convergence theorem implies

AR SR / V(en )| Yoy o P diz — [Viol? + / Volw]? da (6.5)
RN RN
and
Ve, [0+ / V(en )| Yo yn |7 dz — [Veol? + / Volw|? do. (6.6)
RN RN

Since (ZZ, (e, Ye,yn)s ten Yeny,) = 0, We can use the change of variable z = ==2-¥2 to see that
9 e 0,9 Vel [ V0w ®) (e Yenl? + [ Yol i
= N f(tEnTEn)tEnTEndx

R
= [ et Do)l () (67

Now, we prove that t., — 1. First we show that t,, — tp < co. Assume by contradiction that
|te,| = oo. Then, using the fact that ¢(|z|) = 1 for z € Bs(0) and that Bs(0) C B_s (0) for n
2 2 2en

sufficiently large, we can see that (6.7) and (f5) imply

e NIV Y eyl + IV el +/RN Vienz) (L, Tep P + [Tepy,|?) do

le le,W(Z

2/ M(u(g))qdz > f(nw(z))l/ (w(2))4dz (6.8)
B5(0) (te,w(2))1 (te,w(2))1 B5(0)

where z € RY is such that w(z) = min{w(z) : |z| < %} > 0 (note that w € C(RY) and w > 0 in

RYM). Putting together (f1), p < q, to, — 00, (6.5) and (6.6), we can see that (6.8) implies that

1 e, um H({/ﬂ — 00, which gives a contradiction. Therefore, up to a subsequence, we may assume that

te, — to > 0. If to = 0, we can use (6.5), (6.6), (6.7), p < ¢ and (f2), to get

HT57L7yn H?/,p — 07
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which is a contradiction. Hence, ¢y > 0. Now, we show that tg = 1. Letting n — oo in (6.7), we can
see that

- — f(t()w)
Since w € My, we have
Volb + [Vw[d + / Vo(wPdz + w?) do = (w)w dz. (6.10)
RN RN

Putting together (6.11) and (6.10), we find

(579 1)[Vel? + (1277 1)/ Vow? da :/
RN RN

( fltow) f(w)> o da. (6.11)

(tow)?—1  wa-l
By (f5), we can deduce that ¢ty = 1. This fact and the dominated convergence theorem yield
lim F(te,Ye, y,) dx = / F(w) dx. (6.12)
Hence, taking the limit as n — oo in
2, b, 12, ‘
Iffn(@sn(yn)) :?’VTanayn ’p + ?’VTgn,yn ’q
td

te
+/ V(ETL x) ( = ‘Tan,yn‘p + ‘Tffn/yn‘q) dx
RN p q

- F(t.,Ye, y.) dx
RN
and exploiting (6.5), (6.6) and (6.12), we can deduce that

nh_{gozan(q)sn (yn)) = vy (w) = dy;
which is impossible in view of (6.4). O

Now, we are in the position to introduce the barycenter map. We take p > 0 such that M; C B,(0),
and we set x : RY — R as follows

[z if|z| <p,

x(@) = % if |z| > p.

We define the barycenter map f. : No — RY by

_ Jrv x(e@) (ufP + |ul?) da
Jan (lulP + [ul9) dz

Lemma 6.2. The functional ®. verifies the following limit

Be(u)

lin% B:(®(y)) = y uniformly in y € M. (6.13)
E—r
Proof. Suppose by contradiction that there exist dgp > 0, {y,} C M and €, — 0 such that

EnT—Yn

Using the definitions of @, (yn), B, , ¥ and the change of variable z = , we can see that

Jew [X(en 2 + yn) = ynl (19 (| en 2w (2)P + [¥(| en 2w (2)]7) d2
Jew (ol en 2[)w(2)P + [(| en 2w (2)]9) dz

Bey (e, (Un)) = Yn +
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Taking into account {y,} C M C B,(0) and applying the dominated convergence theorem, we can
infer that

|Ben (Pe (yYn)) = Yn| = on(1)
which contradicts (6.14). O

At this point, we introduce a subset N of - by taking a function h : Ry — Ry such that h(e) — 0
as € — 0, and setting N
N ={u e N; : Z.(u) < dy, + h(e)},

where h(e) = supyeps |Ze(Pe(y)) — diy|. By Lemma 6.1, we know that h(e) =0 as ¢ — 0. By
definition of h(e), we can deduce that for all y € M and £ > 0, ®.(y) € N and N. # (). Moreover,
we have the following lemma.
Lemma 6.3. For any 6 > 0, the following holds

lim sup dist(Be(u), Ms) = 0.

e—0 v

ueN:

Proof. Let €, — 0 as n — oo. For any n € N, there exists {u,} C ./\~/€n such that

su inf u) —y| = inf Up) — Yyl + o, (1).
St 8 (0) = =, BeaCun) =1+ on ()

Therefore, it suffices to prove that there exists {y,} C Ms such that
lim [z, (un) — yn| = 0. (6.15)
n—o0

Thus, recalling that {u,} C N2, C N, , we can deduce that
dvy < ¢,y < I, (un) < dy, + h(en)
which implies that Z., (u,) — dy,. By Proposition 6.1, there exists {§,} C R" such that y, =
enUn € Ms for n sufficiently large. Thus
n fRN X(en 2 + yn) = Ynl(|un(z + Jn) [P + |un(z + 9n)|9) dz
fRN(‘un(z + Un) [P+ un(2 + §n)|?) dz

Since uy, (- + ypn) strongly converges in Yy, and €y, 2z + y, — y € M, we can deduce that 5., (u,) =
Yn + 0n(1), that is (6.15) holds. O

Bz—:n (Un) = Un

Now we show that (P.) admits at least catps; (M) solutions. In order to achieve our aim, we recall
the following result for critical points involving Lyusternik-Shnirel’man category. For more details
one can see [10].

Theorem 6.1. Let U be a C1! complete Riemannian manifold (modelled on a Hilbert space). As-
sume that h € C1(U,R) is bounded from below and satisfies —oo < infyy h < d < k < oo. Moreover,
suppose that h satisfies the Palais-Smale condition on the sublevel {u € U : h(u) < k} and that d is
not a critical level for h. Then

card{u € h? : Vh(u) = 0} > catpa(h?),
where h = {u € U : h(u) < d}.
With a view to apply Theorem 6.1, the following abstract lemma provides a very useful tool since

relates the topology of some sublevel of a functional to the topology of some subset of the space RY;
see [10].

Lemma 6.4. Let Q,Q1 and Qo be closed sets with Q1 C Qo and let m: Q—Qo, Y 1 Q1 = Q be
continuous maps such that wo 1 is homotopically equivalent to the embedding j : Q1 — Qo. Then
catqa () > catq,(21).
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Since N is not a C' submanifold of X., we cannot directly apply Theorem 6.1. Fortunately, by
Lemma 3.5, we know that the mapping m. is a homeomorphism between A and S, and S, is a C!
submanifold of X.. So we can apply Theorem 6.1 to V. (u) = Z. (e (u))|s. = Zc(m:(u)), where U,
is given in Lemma 3.6. In the light of the above observations, we are ready to give the proof of the
main result of this work.

Proof of Theorem 1.1. For any ¢ > 0, we define a. : M — S. by setting a.(y) = m-1(®-(y)). By
using Lemma 6.1 and the definition of ., we can see that

lim U, (e (y)) = im Z.(®.(y)) = dy, uniformly in y € M.
e—0 e—0

Set S. = {w € S, : U (w) < dy, +h(e)}, where h(e) = supyens |Ve(ae(y)) —dy,| — 0 as e — 0. Thus,
ae(y) € S. for all y € M, and this yields S, # 0 for all € > 0.

Taking into account Lemma 6.1, Lemma 3.5, Lemma 3.6, and Lemma 6.3, we can find € = &5 > 0
such that the following diagram

M 25T ST N5 My

is well defined for any € € (0, ). By using Lemma 6.2, there exists a function 6(e, y) with |0(e, y)| < g
uniformly in y € M, for all € € (0,2), such that 5.(P-(y)) =y + (e, y) for all y € M. We can see
that H(t,y) = y+(1—1)0(e,y), with (¢,y) € [0, 1] x M, is a homotopy between S.o®, = (S.om.)oa,
and the inclusion map id : M — M;. This fact and Lemma 6.4 imply that catg_ (S.) > catpr, (M).
On the other hand, let us choose a function h(e) > 0 such that h(¢) — 0 as ¢ — 0 and such that
dy, + h(e) is not a critical level for Z.. For € > 0 small enough, we deduce from Proposition 5.1 that
7. satisfies the Palais-Smale condition in N-. So, by (ii) of Lemma 3.6, we infer that V. satisfies
the Palais-Smale condition in S.. Hence, by using Theorem 6.1, we obtain that ¥, has at least
catg_ (S.) critical points on S.. Then, in view of (iii) of Lemma 3.6, we can infer that Z. admits at
least catpr, (M) critical points. O

7. CONCENTRATION OF SOLUTIONS TO (P:)

Let us start with the following result which plays a fundamental role in the study of the behavior
of maximum points of solutions to (Px).

Lemma 7.1. Let v, be a weak solution of the problem
~Agtn = Aqn + V(@) ([0l 20 + [on]0n) = f(0n) i R (P,)
v € WHP(RN) N WH(RN), v, >0 in RN, Vi
where Vi, (z) > Vo and v, — v in WHP(RN) N WHYRYN) for some v £ 0. Then v, € L®°(RY) and
there exists C > 0 such that |vy|ec < C for all n € N. Moreover,

lim v, (x) =0 uniformly in n € N.

Proof. We follow some ideas in [3,13] by developing a suitable Moser iteration argument [19]. For
any R>0,0 <7 < & let n € C®°(RY) such that 0 <5 < 1,7 =1in RV \ Bg(0), n =0 in Br_,(0)
and |Vn| < 2/r. For each n € N and for L > 0, let

q(B-1) B—1
ZLn = nqvnvL’n and wp, = NV, s

where vy, , = min{v,, L} and § > 1 to be determined later. Choosing zr,, as a test function in

(Py,,) we have

/N \an\pJan -Vzrn + ]an|q*2an -Vzrn + Vn(vﬁ'f1 + v,qfl)zL,n dr = . f(vn)zrpn d.
R R
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By assumptions (f1) and (f2), for any £ > 0 there exists C¢ > 0 such that
|F()] < EPTY + Celt|r " for all t € R
Hence, using (V1) and choosing & € (0, V}), we have

/RN nqun |Vv |7dx < C’g/ vl nqu(n Yy — q/RN n?~ lv%(n vn|an|q 2V, - Vndz.
For each 7 > 0 we can use Young’s inequality to obtain
/ nqun |an|qu < CE/ vd'n vL( Yz + q7’/ |an|qv%(7’ifl)nq dx
RN RN
+qC> / vq\Vn|qvq(6 Y da

and taking 7 > 0 sufficiently small, we get

/R n ULB 2 |V, |?de < C/ vd" qu( Yz + C’/ ]Vn\qquq(ﬁ Y dz. (7.1)
On the other hand, using the Sobolev inequality and the Hélder inequality, we can infer

}<c/ memmzc/ IV (v w,) |7 da
RN N ’

< Cp1 (/ |Vn\qquLn Y de +/ nqu |an|q dm) . (7.2)
RN
Combining (7.1) and (7.2), we find
winlf. < CB° ( / Vool da + / ol tof )dm) (73)
RN RN

(") .
We claim that v, € L K (|x| > R) for R large enough and uniformly in n. Let 8 = Z. From (7.3)
we have

foralpe <080 ([ 1Vatgettas [ ot )

or equivalently

L <cp ( /. |Vn|quvz,;q do+ /R g )

q q
« @-q i . a*
lwr g < CB1 (/ |V|todo] 4 dx) + Cp1 (/ (vamuy 2 )1 da:> / vl dx
RN ’ RN ’ o> 4

From the definition of wy, ,, we have

q
* aF

q g
a“—q @<-q a* N a*
</ (vnmvy 3, )‘I*dx> ' < Cpt (/ ]quv‘lenqdac> +Cp? (/ (vnnop, 5, )? dx> ! (/ . vl dx)
RN RN RN lz|> 5

Since v, — v in WHP(RN) N WWH4(RY), for R > 0 sufficiently large, we get

/ vq" dx < e uniformly in n € N.
2> 3
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a4
£

a*—q a .
</ |>R(vnnvL7fL )4 dm) < Cpl /]RN vgvg;q dx < Cp? /]RN vldr < K < oo.
z|>

Using Fatou’s lemma, as L — 0o, we deduce that

(a2
/ vn T dr < 00
|z|>R

and therefore the assertion holds. Next, choosing 8 = q*tq_—t1 with ¢t = (g7)°

8
% < ¢* and v, € Lﬁ(m > R —r). From (7.3) we find

or equivalently

da = e have 8 > 1,

lwrnll < CB1 / v%v%(i_l) dx +/ v%*v%(i_l) dx
R>|z|>R—r ' |z|>R—r ’

lwrnll < CB1 / 038 dx +/ vl "B d |
R>|z|>R-r |z|>R—r

Using the Hoélder inequality with exponents ﬁ and t, we get

wi . < CB0

t=1
Bt t
t—1
/ vy dx / dx
R>|z|>R—r R>|z|>R—r

1
t

+

Since (¢* — q)t = (¢*)?, we deduce that

Note that

t—1

qBt t
lwr g < CB1 / vy b dx -
R>[a[>R—r

a4
3

q
B qp
lvp s < / vi ~dx
La*5(|z|>R) o[> Rr Ly
* q"(B-1) T _ q
< (/]RN n'og v, da:) = |wLnlg

Lt T
< Copt / vyt dx
R>|z|>R—r

= Cﬁqlvanqﬁ
Lt=T(Jz|>R—r)

which combined with Fatou’s lemma with respect to L gives

Taking y = £¢-1

qt

B B
””n’%q*ﬁ(\xlzm < OB%vn|™s :

LT (|z[>R~r)
and s = %, it follows from the above inequality that

ab S XTE i
[onl o1 oz ry S €7 XZT T nl L g2 R

1
t 4qpt
/ v,(f*_Q)t dx / vy
|x|>R—r |z|>R—r
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which implies that [vp|ge(z1>Rr) < Clvnl|pe® (g)>r-r)- Since vy, v in Wha(RN), for all € > 0 there
exists R > 0 such that

|Un| oo (je)>r) < € forall n € N.
This completes the proof of the lemma. O

Lemma 7.2. There exists 6 > 0 such that |vy|ec > 0 for all n € N.

Proof. Assume to the contrary that |v,|oc — 0 as n — 0o. By (f2), there exists ng € N such that
f(lvnloo

PN < % for all n > ng. Therefore, in view of (f5), we can see that

f(lvn]oo)

5
o0

Vo
[Vonl, + [Von|g + Vo(lonlp + |valg) < [onlPdz < - Jvnlp,

RN oy,

which leads to a contradiction. O

End of the proof of Theorem 1.1. Let u., be a solution to (P:,). Then v,(z) = ue,(z + 9n) is a
solution to (Py;,) with V,,(x) = V(ep x + €, Un), where {g,} is given by Proposition 6.1. Moreover,
in view of Proposition 6.1, up to subsequence, v, = v # 0 in Yy, and y, = €,9n — vy € M.
If p,, denotes a global maximum point of v,, we can use Lemma 7.1 and Lemma 7.2 to see that
pn € Br(0) for some R > 0. Consequently, z.. = p, + ¥p is a global maximum point of wu,, and
then e, 2., = €n pn + €n Jn — y because {p,} is bounded. This fact and the continuity of V' yield
Vienze,) = V(y) = Vo as n — oo.

Finally, we prove the exponential decay of u.,. We use some arguments from [13]. Since v,(xz) —0
as |z| — oo uniformly in n € N, and using (f1), we can find R > 0 such that

%
flop(z)) < ?O(vﬁ_l(x) + 087 Yx)) forall |z| > R.
Then, by using (V1), we obtain
Byt = Aot PR ) = fon) = (V= ) (7t

v (7.4)
< f(vp) — ?“( p=l L9y <0 for 2| > R.

Let ¢(z) = Me~c*l with ¢, M > 0 such that ¢?(p—1) < %, Alg—1) < % and Me=°F > v, (x) for
all |x| = R. We can see that

—App — Dy + ?(#_1 + ¢q_1)

= ¢! <‘;° —Pp—1)+ N1 1cp‘1> + ot <V0 —cl(g—1)+ N

|z 2 ]

1
cq_1> >0 for|z| > R.
(7.5)
Using n = (v, — @) € Wol’q(RN \ Bgr) as a test function in (7.4) and (7.5), we find

oz/’ (VR |P~2V0, — |[Vo[P2V¢) - Vi + (V| 2V, — [Ve|172Ve) - Vi
{lz|>R}N{vn>¢}

D RN S P

Since for ¢t > 1 the following holds (see formula (2.10) in [22])

_l’_

(|2 2z = Jy["?y) - (x—y) >0 forall z,y € RY,
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and U, v, are continuous in RY, we deduce that v,(z) < ¢(x) for all |[z| > R. Recalling that
Ue, () = vp(x — §p) and {p,} is bounded, we conclude that u. (z) < Cre~C21*=2nl for all z € RN.
This completes the proof of Theorem 1.1. O
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