Introduction: Drug-induced block of the hERG potassium channel could predispose to torsade de pointes, depending on occurrence of concomitant blocks of the calcium and/or sodium channels. Since the hERG potassium channel block affects cardiac repolarization, the aim of this study was to propose a new reliable index for non-invasive assessment of drug-induced hERG potassium channel block based on electrocardiographic T-wave features. Methods: ERD30% (early repolarization duration) and TS/A (down-going T-wave slope to T-wave amplitude ratio) features were measured in 22 healthy subjects who received, in different days, doses of dofetilide, ranolazine, verapamil and quinidine (all being hERG potassium channel blockers and the latter three being also blockers of calcium and/or sodium channels) while undergoing continuous electrocardiographic acquisition from which ERD30% and TS/A were evaluated in fifteen time points during the 24 h following drug administration (“ECG Effects of Ranolazine, Dofetilide, Verapamil, and Quinidine in Healthy Subjects” database by Physionet). A total of 1320 pairs of ERD30% and TS/A measurements, divided in training (50%) and testing (50%) datasets, were obtained. Drug-induced hERG potassium channel block was modelled by the regression equation BECG(%) = a·ERD30% + b·TS/A+ c·ERD30%·TS/A + d; BECG(%) values were compared to plasma-based measurements, BREF(%). Results: Regression coefficients values, obtained on the training dataset, were: a = −561.0 s−1, b = −9.7 s, c = 77.2 and d = 138.9. In the testing dataset, correlation coefficient between BECG(%) and BREF(%) was 0.67 (p < 10−81); estimation error was −11.5 ± 16.7%. Conclusion: BECG(%) is a reliable non-invasive index for the assessment of drug-induced hERG potassium channel block, independently from concomitant blocks of other ions.
Electrocardiogram-based index for the assessment of drug-induced hERG potassium channel block / Burattini, L.; Sbrollini, A.; Scinocca, L.; Peroni, C.; Marcantoni, I.; Morettini, M.. - In: JOURNAL OF ELECTROCARDIOLOGY. - ISSN 0022-0736. - ELETTRONICO. - 69:(2021), pp. 55-60. [10.1016/j.jelectrocard.2021.10.005]
Electrocardiogram-based index for the assessment of drug-induced hERG potassium channel block
Burattini L.
;Sbrollini A.;Marcantoni I.;Morettini M.
2021-01-01
Abstract
Introduction: Drug-induced block of the hERG potassium channel could predispose to torsade de pointes, depending on occurrence of concomitant blocks of the calcium and/or sodium channels. Since the hERG potassium channel block affects cardiac repolarization, the aim of this study was to propose a new reliable index for non-invasive assessment of drug-induced hERG potassium channel block based on electrocardiographic T-wave features. Methods: ERD30% (early repolarization duration) and TS/A (down-going T-wave slope to T-wave amplitude ratio) features were measured in 22 healthy subjects who received, in different days, doses of dofetilide, ranolazine, verapamil and quinidine (all being hERG potassium channel blockers and the latter three being also blockers of calcium and/or sodium channels) while undergoing continuous electrocardiographic acquisition from which ERD30% and TS/A were evaluated in fifteen time points during the 24 h following drug administration (“ECG Effects of Ranolazine, Dofetilide, Verapamil, and Quinidine in Healthy Subjects” database by Physionet). A total of 1320 pairs of ERD30% and TS/A measurements, divided in training (50%) and testing (50%) datasets, were obtained. Drug-induced hERG potassium channel block was modelled by the regression equation BECG(%) = a·ERD30% + b·TS/A+ c·ERD30%·TS/A + d; BECG(%) values were compared to plasma-based measurements, BREF(%). Results: Regression coefficients values, obtained on the training dataset, were: a = −561.0 s−1, b = −9.7 s, c = 77.2 and d = 138.9. In the testing dataset, correlation coefficient between BECG(%) and BREF(%) was 0.67 (p < 10−81); estimation error was −11.5 ± 16.7%. Conclusion: BECG(%) is a reliable non-invasive index for the assessment of drug-induced hERG potassium channel block, independently from concomitant blocks of other ions.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022073621002120-main.pdf
Solo gestori archivio
Descrizione: Versione editoriale
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
JEC_2021_Burattini_Accepted_Version.pdf
Open Access dal 25/10/2022
Descrizione: Documento in post-print
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Creative commons
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.