The focus of this work is to design a deeply quantized anomaly detector of oil leaks that may happen at the junction between the wind turbine high-speed shaft and the external bracket of the power generator. We propose a block-based binary shallow echo state network (BBS-ESN) architecture belonging to the reservoir computing (RC) category and, as we believe, it also extends the extreme learning machines (ELM) domain. Furthermore, BBS-ESN performs binary block-based online training using fixed and minimal computational complexity to achieve low power consumption and deployability on an off-the-shelf micro-controller (MCU). This has been achieved through binarization of the images and 1-bit quantization of the network weights and activations. 3D rendering has been used to generate a novel publicly available dataset of photo-realistic images similar to those potentially acquired by image sensors on the field while monitoring the junction, without and with oil leaks. Extensive experimentation has been conducted using a STM32H743ZI2 MCU running at 480 MHz and the results achieved show an accurate identification of anomalies, with a reduced computational cost per image and memory occupancy. Based on the obtained results, we conclude that BBS-ESN is feasible on off-the-shelf 32 bit MCUs. Moreover, the solution is also scalable in the number of image cameras to be deployed and to achieve accurate and fast oil leak detections from different viewpoints.

Online Learning of Oil Leak Anomalies in Wind Turbines with Block-Based Binary Reservoir / Cardoni, Matteo; Pietro Pau, Danilo; Falaschetti, Laura; Turchetti, Claudio; Lattuada, Marco. - In: ELECTRONICS. - ISSN 2079-9292. - 10:22(2021). [10.3390/electronics10222836]

Online Learning of Oil Leak Anomalies in Wind Turbines with Block-Based Binary Reservoir

Laura Falaschetti;Claudio Turchetti;
2021-01-01

Abstract

The focus of this work is to design a deeply quantized anomaly detector of oil leaks that may happen at the junction between the wind turbine high-speed shaft and the external bracket of the power generator. We propose a block-based binary shallow echo state network (BBS-ESN) architecture belonging to the reservoir computing (RC) category and, as we believe, it also extends the extreme learning machines (ELM) domain. Furthermore, BBS-ESN performs binary block-based online training using fixed and minimal computational complexity to achieve low power consumption and deployability on an off-the-shelf micro-controller (MCU). This has been achieved through binarization of the images and 1-bit quantization of the network weights and activations. 3D rendering has been used to generate a novel publicly available dataset of photo-realistic images similar to those potentially acquired by image sensors on the field while monitoring the junction, without and with oil leaks. Extensive experimentation has been conducted using a STM32H743ZI2 MCU running at 480 MHz and the results achieved show an accurate identification of anomalies, with a reduced computational cost per image and memory occupancy. Based on the obtained results, we conclude that BBS-ESN is feasible on off-the-shelf 32 bit MCUs. Moreover, the solution is also scalable in the number of image cameras to be deployed and to achieve accurate and fast oil leak detections from different viewpoints.
2021
File in questo prodotto:
File Dimensione Formato  
electronics-10-02836.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 3.51 MB
Formato Adobe PDF
3.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/293223
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact